Citation: Xu Jian, Song Qiuling. Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds in the Presence of Dioxygen[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1151-1162. doi: 10.6023/cjoc201603042 shu

Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds in the Presence of Dioxygen

  • Corresponding author: Song Qiuling, qsong@hqu.edu.cn
  • Received Date: 2 January 2016
    Revised Date: 20 January 2016

    Fund Project: the Recruitment Program of Global Experts (1000 Talents Plan), the Fujian Hundred Talents Plan and the Program of Innovative Research Team of Huaqiao University No. Z14X0047Project supported by the National Natural Science Foundation of China No.21202049

Figures(15)

  • The difunctionalization of unsaturated carbon-carbon bonds is a powerful strategy for the synthesis of various organic compounds. Recently, the remarkable progress has been made in difunctionalization of unsaturated carbon-carbon bonds with dioxygen and radicals. The present protocol, which utilizes dioxygen as oxygen source, provides a green and atom economy approach to alcohols or ketones. This review will summarize the recent development in this area on the basis of different types of radicals.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Nguyen, L.-M.; Diep, V.-V.; Phan, H.-T.; Niesor, E.-J.; Masson, D.; Guyon-Gellin, Y.; Buattini, E.; Severi, C.; Azoulay, R.; Bentzen, C.-L. WO 2004026245, 2004 [Chem. Abstr. 2004, 140, 287532].(b) Erion, M.-D.; Jiang,-H.; Boyer, S.-H. US 20060046980, 2006 [Chem. Abstr. 2006, 144, 254238].(c) Perumal, S.-K.; Adediran, S.-A.; Pratt, R.-F. Bioorg. Med. Chem. 2008, 16, 6987.

    4. [4]

      Ryglowski, A.; Kafarski, P. Tetrahedron 1996, 52, 10685.(b) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931.

    5. [5]

      Maryanoff, B.-E.; Reitz, A.-B. Chem. Rev. 1989, 89, 863.

    6. [6]

      Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097.

    7. [7]

      Zhou, M.-X.; Zhou, Y.; Song, Q. Chem. Eur. J. 2015, 21, 10654. 

    8. [8]

      Chen, X.; Li, X.; Chen, X.; Qu, L.; Chen, J.; Sun, K.; Liu, Z.-D.; Bi, W.; Xia, Y.; Wu, H.; Zhao, Y.-F. Chem. Commun. 2015, 51, 3846.

    9. [9]

      Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 7839.

    10. [10]

      Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.

    11. [11]

      Yi, N.-N.; Wang, R.-J.; Zou, Hua.-X.; He, W.-B.; He, W. J. Org. Chem. 2015, 80, 5023. 

    12. [12]

      Zeng, Y.-F.; Tan, D.-H.; Lv, W.-X.; Li, Q.; Wang, H. Eur. J. Org. Chem. 2015, 4335.

    13. [13]

      Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.(b) Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977. 

    14. [14]

      Taniguchi, T.; Idota, A.; Yokoyama, S.; Ishibashi, H. Tetrahedron Lett. 2011, 52, 4768.

    15. [15]

      Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.

    16. [16]

      Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. 

    17. [17]

      Singh, A.-K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 2845. 

    18. [18]

      Wei, W.; Liu, C.-L.; Yang, D.-S.; Wen, J.-W.; You, J.-M.; Suo, Y.-R.; Wang, H.; Chem. Commun. 2013, 49, 10239.

    19. [19]

      Wei, W.; Wen, J.-W.; Yang, D.-S.; Wu, M; You, J.-M.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678. 

    20. [20]

      Liu, C.-R.; Ding, L.-H.; Guo, G.; Liu, W.-W. Eur. J. Org. Chem. 2016, 910.

    21. [21]

      Singh, A.-K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742. 

    22. [22]

      Chawla, R.; Singh, A.-K.; Yadav, L. D. S. Eur. J. Org. Chem. 2014, 2032.

    23. [23]

      Singh, A.-K.; Chawla, R.; Keshari, T.; Yadav, V.-K.; Yadav, L. D. S. Org. Biomol. Chem. 2014, 12, 8550. 

    24. [24]

      Keshari, T.; Yadav, V.-K.; Srivastava, V.-P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986. 

    25. [25]

      Zhou, S.-F.; Pan, X.-Q.; Zhou, Z.-H.; Shoberu, A.; Zhang, P.-Z.; Zou, J.-P. J. Org. Chem. 2015, 80, 5348.

    26. [26]

      Shi, X.-K.; Ren, X.-Y.; Ren, Z.-Y.; Li, J.; Wang, Y.-L.; Yang, S.-Z.; Gu, J.-X.; Gao, Q.; Huang, G.-S. Eur. J. Org. Chem. 2014, 5083.

    27. [27]

      Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. 

    28. [28]

      Taniguchi. T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151. 

    29. [29]

      Taniguchi, N. J. Org. Chem. 2015, 80, 7797. 

    30. [30]

      Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191.

    31. [31]

      Zhou, S.-F.; Pan, X.-Q.; Zhou, Z.-H.; Shoberu, A.; Zou, J.-P. J. Org. Chem. 2015, 80, 3682.

    32. [32]

      Wang, H.-M.; Lu, Q.-Q.; Qian, C.-H.; Liu, C.; Liu, K.; Chen, K.; Lei, A. Angew. Chem., Int. Ed. 2016, 55, 1094. 

    33. [33]

      Liu, K.; Li, D.-P.; Zhou, S.-F.; Pan, X.-Q.; Shoberu, A.; Zou, J.-P. Tetrahedron 2015, 71, 4031.

    34. [34]

    35. [35]

      Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632.

    36. [36]

      Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Agew. Chem., Int. Ed. 2013, 52, 9747. 

    37. [37]

      Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.

    38. [38]

      Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Comun. 2014, 50, 14101. 

    39. [39]

      Yang, Y.; Liu, Y.-L.; Jiang, Y.; Zhang, Y.; Vicic, D.-A. J. Org. Chem. 2015, 80, 6639.

    40. [40]

      Luo, H.-Q.; Zhang, Z.-P.; Dong, W.; Luo, X.-Z. Synlett 2014, 1307

    41. [41]

      Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692. 

    42. [42]

      Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059. 

    43. [43]

      Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320.(b) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672. 

    44. [44]

      Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010.

    45. [45]

      Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 5572.

    46. [46]

      Lu, Q.; Liu, Z.; Luo, Y.; Zhang, G.; Huang, Z.; Wang, H.; Liu, C.; Miller, J.-T.; Lei, A. Org. Lett. 2015, 17, 3402.

    47. [47]

      Dickschat, A.; Studer, A. Org. Lett. 2010, 12, 3972.

    48. [48]

      Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem., Int. Ed. 2010, 49, 10154. 

    49. [49]

      Taniguchi, T.; Zaimoku, H.; Ishibashi, H. Chem. Eur. J. 2011, 17, 4307. 

    50. [50]

      Kindt, S.; Jasch, H.; Heinrich, M.-R. Chem. Eur. J. 2014, 20, 6251.

    51. [51]

      Su, Y.; Sun, X.; Wu, G.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 9808. 

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    8. [8]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    20. [20]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

Metrics
  • PDF Downloads(0)
  • Abstract views(4906)
  • HTML views(1263)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return