Citation: Chen Zhanguo, Hou Dan, Liu De'e, Hui Wenping. Three-Component Synthesis of 2-Oxazolines from Ethyl α-Cyanocinnamate Derivatives with Amides and N-Bromosuccinimide[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2191-2196. doi: 10.6023/cjoc201603032 shu

Three-Component Synthesis of 2-Oxazolines from Ethyl α-Cyanocinnamate Derivatives with Amides and N-Bromosuccinimide

  • Corresponding author: Chen Zhanguo, chzhg@snnu.edu.cn
  • Received Date: 18 March 2016
    Revised Date: 22 April 2016

    Fund Project: the Innovation Foundation of Postgraduate Cultivation of Shaanxi Normal University 2008CXB009the Natural Science Foundation of Shaanxi Province 2009JM2001the National Natural Science Foundation of China 20572066

Figures(3)

  • An easy and efficient new method for the three-component synthesis of 2-oxazolines from ethyl α-cyanocinnamate derivatives with amide and N-bromosuccinimide has been developed. A series of ethyl α-cyanocinnamate derivatives can be smoothly con-verted into corresponding 2-oxazoline derivatives promoted by Na2CO3 in N, N-dimethylformamide (DMF) at room temperature in high yield (up to 94%). The reactions of 11 structurally different substrates with propionamide, acrylamide, isobutyamide and pentanamide were investigated, respectively. The results indicated that the protocol has applicability in a large scope of ethyl α-cyanocinnamate derivatives and amides. A possible mechanism was proposed and it can explain well the full regiospecificity of the reaction. 39 new compounds were achieved via the three-component synthesis reaction and all the products structures were confirmed by their 1H NMR, 13C NMR and HRMS analysis.
  • 加载中
    1. [1]

      Braga, A. L.; Galetto, F. Z.; Taube, P. S.; Paixão, M. W.; Silveira, C. C.; Singh, D.; Vargas, F. J. Organomet. Chem. 2008, 693, 3563.
      (b) Lee, S.-H.; Bok, J.; Qi, X.; Kim, S. K.; Leed, Y.-S.; Yoon, J. Tetrahedron Lett. 2007, 48, 7309.
      (c) Yang, D.; Yip, Y. C.; Wang, X. C. Tetrahedron Lett. 1997, 38, 7083.
      (d) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 6230.

    2. [2]

      Saravanan, P.; Corey, E. J. J. Org. Chem. 2003, 68, 2760.
      (b) Kobayashi, S.; Fujikawa, S.-I.; Ohmae, M. J. Am. Chem. Soc. 2003, 125, 14357.
      (c) Sone, H.; Kigoshi, H.; Yamada, K. Tetrahedron, 1997, 53, 8149.
      (d) Kingston, D. G. I.; Chaudhary, A. G.; Gunatilaka, A. A. L.; Middleton, M. L. Tetrahedron Lett. 1994, 35, 4483.

    3. [3]

      Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505.
      (b) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.

    4. [4]

      Frump, J. A. Chem. Rev. 1971, 71, 483.  doi: 10.1021/cr60273a003

    5. [5]

      Kangani, C. O.; Day, B. W. Tetrahedron Lett. 2009, 50, 5332.
      (b) Kangani, C. O.; Kelley, D. E. Tetrahedron Lett. 2005, 46, 8917.
      (c) Crosignani, S.; Swinnen, D. J. Comb. Chem. 2005, 7, 688.
      (d) Wipf, P.; Wang, X. D. J. Comb. Chem. 2002, 4, 656.

    6. [6]

      Zhou, P. W.; Blubaum, J. E.; Bums, C. T. Tetrahedron Lett. 1997, 38, 7019.
      (b) Hǒlderle, M.; Bar, G.; Mlhaupt, R. J. Polym. Sci., Part. A:Polym. Chem. 1997, 35, 2539.
      (c) Ohshima, T.; Iwasaki, T.; Mashima, K. Chem. Commun. 2006, 2711.

    7. [7]

      Mei, L.; Hai, Z. J.; Jie, S.; Ming, S.; Hao, Y.; Liang, H. K. J. Comb. Chem. 2009, 11, 220.
      (b) Baltork, I. M.; Moghadam, M.; Tangestaninejad, S. Catal. Commun. 2008, 9, 1153.
      (c) Baltork, I. M.; Khosropour, A. R.; Hojati, S. F. Catal. Commun. 2007, 8, 2000.
      (d) Jnaneshwara, G. K.; Deshpande, V. H.; Lalithambika, M.; Ravindranathan, T.; Bedekar, A. V. Tetrahedron Lett. 1998, 39, 459.

    8. [8]

      Chaudhry, P.; Schoenen, F.; Neuenswander, B. J. Comb. Chem. 2007, 9, 473.
      (b) Schwekendiek, K.; Glorius, F. Synthesis 2006, 2996.
      (c) Badiang, J. G.; Aubé, J. J. Org. Chem. 1996, 61, 2484.

    9. [9]

      Wuts, P. G. M.; Northuis, J. M.; Kwan, T. A. J. Org. Chem. 2000, 65, 9223.  doi: 10.1021/jo000664r

    10. [10]

      Hajra, S.; Bar, S.; Sinha, D.; Maji, B. J. Org. Chem. 2008, 73, 4320.
      (b) Minakata, S.; Morino, Y.; Ide, T. Chem. Commun. 2007, 3279.
      (c) Yeung, Y. Y.; Gao, X.; Corey, E. J. A. J. Am. Chem. Soc. 2006, 128, 9644.
      (d) Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67, 2101.
      (e) Minakata, S.; Nishimura, M.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. Tetrahedron Lett. 2001, 42, 9019.

    11. [11]

      Pei, W.; Timmons, C.; Xu, X.; Wei, H.-X.; Li, G. Org. Biomol. Chem. 2003, 1, 2919.
      (b) Wei, H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67, 4777.
      (c) Chen, D.-J.; Timmons, C.; Wei, H.-X.; Li, G. J. Org. Chem. 2003, 68, 5742.
      (d) Pei, W.; Wei, H.-X.; Chen, D.-J.; Headley, A. D.; Li, G. J. Org. Chem. 2003, 68, 8404.

    12. [12]

      Liu, X.-G.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2010, 1977.
      (b) Anabha, E.; Raveendran, R. R.; Paul, E. S.; Vijay, N. Org. Biomol. Chem. 2010, 8, 901.
      (c) Kawai, D.; Kawasumi, K.; Miyahara, T.; Hirashita, T.; Araki, S. Tetrahedron 2009, 65, 10390.
      (d) Nair, V.; Babu, B. P.; Varghese, V.; Sinu, C. R.; Paul, R. R.; Anabha, E. R.; Suresh, E. Tetrahedron Lett. 2009, 50, 3716.

    13. [13]

    14. [14]

      Chen, Z. G.; Xia, W, ; Wen, H.; Wang, D.; Li, Y. N.; Hu, J. L. Chem. Res. Chin. Univ. 2013, 29, 699.  doi: 10.1007/s40242-013-2420-4

    15. [15]

      Li, W. L.; Chen, Z. G.; Zhou, J. M.; Hu, J. L.; Xia, W. Chin. J. Chem. 2012, 30, 830.  doi: 10.1002/cjoc.201100346

    16. [16]

      Sun, Q.; Shi, L. X.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Chin. J. Chem. 2005, 23, 745.  doi: 10.1002/(ISSN)1614-7065

    17. [17]

      Rao, P. S.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 32, 5821.  doi: 10.1016/S0040-4039(00)93564-0

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    12. [12]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    13. [13]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    14. [14]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(0)
  • Abstract views(1119)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return