Citation: Zhang Linli, Han Zhaobin, Zhang Lei, Li Mingxing, Ding Kuiling. Advances in Hydrogenation of Carboxylic Acid Derivatives and CO2 Using Triphos as the Coordination Ligand[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1824-1838. doi: 10.6023/cjoc201603014 shu

Advances in Hydrogenation of Carboxylic Acid Derivatives and CO2 Using Triphos as the Coordination Ligand

  • Corresponding author: Ding Kuiling, kding@sioc.ac.cn
  • Received Date: 8 March 2016
    Revised Date: 2 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 21472215, 21572254

Figures(26)

  • The reduction of carbon dioxide, carboxylic acids and their derivatives is one of the fundamental transformations both in academia and industry. Considering the increasing environmental issues, the use of molecular hydrogen as the reducing agent is especially attractive. Due to the mild reaction condition, high reactivity and easy modification of homogeneous catalysis, the development of highly efficient and selective homogeneous hydrogenation catalysts to achieve the goal is becoming a hot topic. Impressive progresses have been made using homogenous catalysts derived from transition metals and various ligands as catalysts. Among them, the catalytic system combined with a transition metal and CH3C(CH2PPh2)3 (triphos) usually shows unique reactivity and selectivity. This review will summarize the advance in the hydrogenation of carbon dioxide, carboxylic acids and their derivatives using Ru/triphos, Co/triphos and Cu/triphos as catalysts, as well as their reaction mechanisms.
  • 加载中
    1. [1]

    2. [2]

      Gribble, G. W. Chem. Soc. Rev. 1998, 27, 395.(b) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed.; Wiley, New York, 1997

    3. [3]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.(b) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale, 2nd ed., Weinheim, Wiley-VCH, 2010

    4. [4]

      McAlees, A. J.; McCrindle, R. J. Chem. Soc. C 1969, 2425.

    5. [5]

      Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.(b) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186. 

    6. [6]

      Wang, W. H.; Himeda, H.; Muckerman, J. T.; Manbeck, G. F.; Fujita, F. Chem. Rev. 2015, 115, 12936.

    7. [7]

      Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley, New York, 2001.

    8. [8]

      Rieke, R.; Thakur, D.; Roberts, B.; White, G. J. Am. Oil Chem. 1997, 74, 333. 

    9. [9]

      Stein, M.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 2231. 

    10. [10]

      de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley, Weinheim, 2007.

    11. [11]

      Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536. 

    12. [12]

      Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Mol. Catal. 1988, 44, 347. 

    13. [13]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.

    14. [14]

      Hewertson, W.; Watson, H. R. J. Chem. Soc. 1962, 1490.

    15. [15]

      van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A: Chem. 2003, 206, 185. 

    16. [16]

      Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Coord. Chem. Rev. 1992, 120, 193.(b) Hierso, J.-C.; Amardeil, R.; Bentabet, E.; Broussier, R.; Gautheron, B.; Meunier, P.; Kalck, P. Coord. Chem. Rev. 2003, 236, 143.

    17. [17]

      Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Frediani, P.; Ramirez, J. A. Organometallics 1990, 9, 226. 

    18. [18]

      Barbaro, P.; Bianchini, C.; Meli, A.; Moreno, M.; Vizza, F. Organometallics 2002, 21, 1430.

    19. [19]

      Bianchini, C.; Meli, A.; Moneti, S.; Vizza, F. Organometallics 1998, 17, 2636.(b) Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Organometallics 1998, 17, 2495.(c) Bianchini, C.; Meli, A.; Vizza, F. J. Organomet. Chem. 2004, 689, 4277.

    20. [20]

      Barbaro, P.; Bianchini, C.; Frediani, P.; Meli, A.; Vizza, F. Inorg. Chem. 1992, 31, 1523.

    21. [21]

      Mellone, I.; Bertini, F.; Gonsalvi, L.; Guerriero, A.; Peruzzini, M. Chimia 2015, 69, 331.

    22. [22]

      Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.(b) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem. Eur. J. 2015, 21, 12226. 

    23. [23]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.

    24. [24]

      Berke, H. Book of Abstracts, XⅡth FECHEM Conference on Organometallic Chemistry, Prague, 1997, PL 9.

    25. [25]

      Rosato, D. V.; Rosato, M. V. Plastic Product Material and Process Selection Handbook, Elsevier, North Holland, 2004.

    26. [26]

      Furst, M. R. L.; Goff, R. L.; Quinzler, D.; Mecking, S.; Botting C. H.; Cole-Hamilon D. J. Green Chem. 2012, 12, 472.

    27. [27]

      vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217. 

    28. [28]

      Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499. 

    29. [29]

      Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tooze, R. P. Chem. Commun. 2006, 2289.

    30. [30]

      Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A: Chem. 2011, 346, 70. 

    31. [31]

      Li, Y. H.; Topf, C.; Cui, X. J.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 5196. 

    32. [32]

      Kilner, M.; Tyers, D. V.; Crabtree, S. P.; Wood, M. A. US 7709689, 2003 [Chem. Abstr. 2003, 139, 366612].

    33. [33]

      Crabtree, S. P.; Tyers, D. V.; Sharif, M. WO 05/051907, 2005 [Chem. Abstr. 2005, 143, 43765].

    34. [34]

      Rosi, L.; Frediani, M.; Frediani, P. J. Organomet. Chem. 2010, 695, 1314. 

    35. [35]

      Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510. 

    36. [36]

      Geilen, F. M. A.; Engendahl, B.; Hölscher, M.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2011, 133, 14349. 

    37. [37]

      Phanopoulos, A.; White, A. J. P.; Long, N. J.; Miller, P. W. ACS Catal. 2015, 5, 2500. 

    38. [38]

      Cui, X. J.; Li, Y. H.; Topf, C.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 10596. 

    39. [39]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411. 

    40. [40]

      Magro, A. A. N.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun. 2007, 3154.

    41. [41]

      Dodds, D. L.; Coetzee, J.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Cole-Hamilton, D. J. Chem. Commun. 2012, 48, 12249. 

    42. [42]

      Coetzee, J.; Dodds, D. L.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Slawin, A. M. Z.; Col-Hamilton, D. J. Chem. Eur. J. 2013, 19, 11039. 

    43. [43]

      Cabrero-Antonino, J. R.; Alberico, E.; Junge, K.; Junge, H.; Beller M. Chem. Sci. 2016, 7, 3432.

    44. [44]

      Meuresch, M.; Westhues, S.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 1392. 

    45. [45]

      Cabrero-Antonino, J. R.; Sorribes, I.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 387. 

    46. [46]

      Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.(b) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.(c) Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.(d) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778. 

    47. [47]

      Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; vom Stein, T.; Englert, U.; Holscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.

    48. [48]

      Beydoun, K.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2013, 52, 9554. 

    49. [49]

      Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156. 

    50. [50]

      Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010. 

    51. [51]

      Beydoun, K.; Thenert, K.; Streng, E. S.; Brosinski, S.; Leitner, W.; Klankermayer, J. ChemCatChem 2016, 8, 135

    52. [52]

      Li, Y.; Yan, T.; Junge, K.; Beller M. Angew. Chem., Int. Ed. 2014, 53, 10476.

    53. [53]

      Savourey, S.; Lefevre, G.; Berthet, J.-C.; Cantat, T. Chem. Commun. 2014, 50, 14033.

    54. [54]

      Sorribes, I.; Cabrero-Antonino, J. R.; Vicent, C.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 13580. 

    55. [55]

      Korstanje, T. J.; van der Vlugt, J. I.; Elsevier, C. J.; de Bruin, B. Science 2015, 350, 298.

    56. [56]

      Zall, C. M.; Linehan, J. C.; Appel A. M. ACS Catal. 2015, 5, 5301. 

    57. [57]

      Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369. 

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    7. [7]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    8. [8]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    9. [9]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    10. [10]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Chen Lin Huanjun Xu . ‘Thank-You Letter’ from CO2: Development of Technology Has Changed My Image. University Chemistry, 2026, 41(2): 238-241. doi: 10.12461/PKU.DXHX202502048

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    20. [20]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

Metrics
  • PDF Downloads(0)
  • Abstract views(2723)
  • HTML views(457)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return