Citation: Li Xiaona, Wang Lihua, Zhou Hongyong, Wang Jiaxi. Chiral Amino-acids Derivatives-Ruthenium Catalyzed Asymmetric Transfer Hydrogenation of Ketones[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2175-2182. doi: 10.6023/cjoc201603005 shu

Chiral Amino-acids Derivatives-Ruthenium Catalyzed Asymmetric Transfer Hydrogenation of Ketones

  • Corresponding author: Wang Jiaxi, wangjiaxi@hebut.edu.cn
  • Received Date: 4 March 2016
    Revised Date: 9 April 2016

    Fund Project: the Natural Science Foundation of Hebei Province 2011202087

Figures(4)

  • Benzimidazoles derived from chiral amino acids and benzimidazoles derived from dipeptides were prepared and proved to be efficient ligands in the ruthenium catalyzed asymmetric transfer hydrogenation of acetophenone. Employing ligand 2 in the reduction of acetophenone resulted in better activity and enantioselectivity (with 15400 h-1 TOF and 77% ee). Through structure-activity correlations, the corresponding metal-ligand bifunctional mechanism was speculated. In addition, the catalytic system of[RuCl2(p-cymene)]2/2 exhibited reversed temperature effects, which explained through kinetics data. The enantioselectivity was increased from 38% to 43% when LiCl was added in dipeptides derived benzimidazoles 7/[RuCl2(p-cymene)]2 catalyzed asymmetric transfer hydrogenation.
  • 加载中
    1. [1]

      Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
      (b) Zhang, B.; Wang, H.; Lin, G. Q.; Xu, M. H. Eur. J. Org. Chem. 2011, 4205.
      (c) Kang, G.; Lin, S.; Shiwakoti, A.; Ni, B. Catal. Commun. 2014, 57, 111.

    2. [2]

      Wu, X. F.; Vinci, D.; Ikariya, T.; Xiao, J. L. Chem. Commun. 2005, 4447.
      (b) Denizalti, S.; Mercan, D.; Sen, B.; Gökçe, A. G.; Çetinkaya, B. J. Organomet. Chem. 2015, 779, 62.
      (c) Liu, X.; Zhang, T.; Hu, Y.; Shen, L. Catal. Lett. 2014, 144, 1289.

    3. [3]

      Wu, X. F.; Li, X. H.; McConville, M.; Saidi, O.; Xiao, J. L. J. Mol. Catal A:Chem. 2006, 247, 153.
      (b) Chakka, S. K.; Andersson, P. G.; Maguire, G. E. M.; Kruger, H. G.; Govender, T. Eur. J. Org. Chem. 2010, 972.
      (c) Heyan, J. J. Chem. Res. 2013, 37, 761.
      (d) Carmona, D.; Viguri, F.; Lamata, M. P.; Ferrer, J.; Bardají, E.; Lahoz, F. J.; GarcíaOrduña, P.; Oro, L. A. Dalton Trans. 2012, 41, 10298.

    4. [4]

      Sheeba, M. M.; Tamizh, M. M.; Farrugia, L. J.; Endo, A.; Karvembu, R. Organometallics 2014, 33, 540.
      (b) Isik, U.; Aydemir, M.; Meriç, N.; Durap, F.; Kayan, C. J. Mol. Catal. A:Chem. 2013, 379, 225.
      (c) Zeng, L.; Wu, F.; Li, Y. Y.; Dong, Z. R.; Gao, J. X. J. Org. Chem. 2014, 762, 34.

    5. [5]

      Ye, W.; Zhao, M.; Yu, Z. Chem. Eur. J. 2012, 18, 10843.  doi: 10.1002/chem.201201703

    6. [6]

      Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521.  doi: 10.1021/ja954126l

    7. [7]

      Manville, C. V.; Docherty, G.; Padda, R.; Wills, M. Eur. J. Org. Chem. 2011, 6893.
       

    8. [8]

      Huynh, K. D.; Ibrahim, H.; Toffano, M.; Vo-Thanh, G. Tetrahedron:Asymmetry 2010, 21, 1542.  doi: 10.1016/j.tetasy.2010.04.065

    9. [9]

      Jerphagnon, T.; Haak, R.; Berthiol, F.; Gayet, A. J. A.; Ritleng, V.; Holuigue, A.; Pannetier, N.; Pfeffer, M.; Voelklin, A.; Lefort, L.; Verzijl, G.; Tarabiono, C.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Top. Catal. 2010, 53, 1002.  doi: 10.1007/s11244-010-9569-6

    10. [10]

      Ye, W.; Zhao, M.; Du, W.; Jiang, Q.; Wu, K.; Wu, P.; Yu, Z. Chem. Eur. J. 2011, 17, 4737.  doi: 10.1002/chem.201002039

    11. [11]

      Lin, J.; Tian, H.; Jiang, Y.; Huang, W.; Zheng, L.; Zhang, S. Tetrahedron:Asymmetry 2011, 22, 1434.
      (b) He, J.; Chen, Q.; Ni, B. Tetrahedron Lett. 2014, 55, 3030.

    12. [12]

      Ohta, T.; Nakahara, S. I.; Shigemura, Y.; Hattori, K.; Fu-rukawa, I. Appl. Organomet. Chem. 2001, 15, 699.
      (b) Tinnis, F.; Adolfsson, H. Org. Biomol. Chem. 2010, 8, 4536.
      (c) Cambeiroa, X. C.; Pericàs, M. A. Adv. Synth. Catal. 2011, 353, 113.
      (d) Geoghegan, P.; O'Leary, P. Tetrahedron:Asymmetry 2010, 21, 867.
      (e) Ahlford, K.; Ekström, J.; Zaitsev, A. B.; Ryberg, P.; Eriksson, L.; Adolfsson, H. Chem. Eur. J. 2009, 15, 11197.
      (f) Li, X. N.; Zhou, H. Y.; Feng, L.; Duan, K.; Wang, J. X. Chin. J. Org. Chem. 2012, 32, 19(in Chinese).

    13. [13]

      Li, X. N.; Zhang, P. L.; Duan, K.; Wang, J. X. Appl. Organomet. Chem. 2012, 26, 168.  doi: 10.1002/aoc.v26.4

    14. [14]

      Vastila, P.; Zaitser, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H. Chem. Eur. J. 2006, 12, 3218.  doi: 10.1002/(ISSN)1521-3765

    15. [15]

      Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Noyori, R. Chem. Asian. J. 2006, 1~2, 102.
      (b) Sandoval, C. A.; Ding, Y.; Li, K.; Noyori, R. Chem. Asian J. 2008, 3, 1801.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(867)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return