Citation: Ma Hongguang, Wang Liping, Xu Zhihong, Zhang Yapeng, Li Xia, Zhu Weiming. Synthesis and Cytotoxicity of N12-Ethyl Substituted Indolocarbazole Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1839-1846. doi: 10.6023/cjoc201602035 shu

Synthesis and Cytotoxicity of N12-Ethyl Substituted Indolocarbazole Derivatives

  • Corresponding author: Zhu Weiming, weimingzhu@ouc.edu.cn
  • Received Date: 29 February 2016
    Revised Date: 17 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 81561148012,41376148,81273532,30973680and the National Natural Science Foundation of China-Guangdong Fund Joint Project No. U1501221the National High-Tech R & D Program of China No. 2012AA092104

Figures(1)

  • Nine new N12-ethyl substituted indolocarbazole derivatives were synthesized. Their structures were identified by 1H NMR, 13C NMR and HRESIMS. The thiazolyl blue tetrazolium bromide (MTT) method was used to evaluate the cytotoxicities of these derivatives against A549, HepG-2 and Hela cell lines, while the cell counting kit-8 (CCK-8) method was used to evaluate cytotoxicity against K562 cell lines. The results showed that compounds 79 displayed comparable cytotoxicity to adriamycin (ADM) against K562 cell lines with the IC50 values of 0.43~0.93 μmol/L. Compounds 8 and 12 showed comparable cytotoxicity to ADM against Hela cell lines with the IC50 values of 1.23 and 0.43 μmol/L, respectively. The hydrochloride 14 of compound 13 exhibited good cytotoxicity against the four cell lines with the IC50 values of 0.23~1.72 μmol/L, indicating a worth of further study as an antitumor lead compound.
  • 加载中
    1. [1]

    2. [2]

      Ma, H.; Liu, Q.; Zhu, G.; Liu, H.; Zhu, W. J. Asian Nat. Prod. Res. 2016, 18, 92. 

    3. [3]

    4. [4]

    5. [5]

      Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275. 

    6. [6]

    7. [7]

      Wang, L.; Mei, X.; Wang, C.; Zhu, W. Tetrahedron 2015, 71, 7990.

    8. [8]

      Gani, O. A.; Engh, R. A. Nat. Prod. Rep. 2010, 27, 489. 

    9. [9]

      Sánchez, C.; Méndez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007. 

    10. [10]

      Fu, P.; Zhuang, Y.; Wang, Y.; Liu, P.; Qi, X.; Gu, K.; Zhang, D.; Zhu, W. Org. Lett. 2012, 14, 6194.

    11. [11]

      Fu, P.; Yang, C.; Wang, Y.; Liu, P.; Ma, Y.; Xu, L.; Su, M.; Hong, K.; Zhu, W. Org. Lett. 2012, 14, 2422.

    12. [12]

      Pereira, E. R.; Belin, L.; Sancelme, M.; Prudhomme, M.; Ollier, M.; Rapp, M.; Severe, D.; Riou, J. F.; Fabbro, D.; Meyer, T. J. Med. Chem. 1996, 39, 4471. 

    13. [13]

      Labourier, E.; Riou, J. F.; Prudhomme, M.; Carrasco, C.; Bailly, C.; Tazi, J. Cancer Res. 1999, 59, 52.

    14. [14]

      Zhu, G. X.; Conner, S. E.; Zhou, X.; Chan, H. K.; Shih, C.; Engler, T. A.; Al-Awar, R. S.; Brooks, H. B.; Watkins, S. A.; Spencer, C. D.; Schultz, R. M.; Dempsey, J. A.; Considine, E. L.; Patel, B. R.; Ogg, C. A.; Vasudevan, V.; Lytle, M. L. Bioorg. Med. Chem. Lett. 2004, 14, 3057. 

    15. [15]

      Zhang, H. C.; White, K. B.; Ye, H.; McComsey, D. F.; Derian, C. K.; Addo, M. F.; Andrade-Gordon, P.; Eckardt, A. J.; Conway, B. R.; Westover, L.; Xu, J. Z.; Look, R.; Demarest, K. T.; Emanuel, S.; Maryanoff, B. E. Bioorg. Med. Chem. Lett. 2003, 13, 3049. 

    16. [16]

      Rodriguez-Ariza, A.; Lopez-Pedrera, C.; Aranda, E.; Barbarroja, N. Crit. Rev. Oncol. Hematol. 2011, 80, 241. 

    17. [17]

      Hudkins, R. L.; Becknell, N. C.; Zulli, A. L.; Underiner, T. L.; Angeles, T. S.; Aimone, L. D.; Albom, M. S.; Chang, H.; Miknyoczki, S. J.; Hunter, K.; Jones-Bolin, S.; Zhao, H.; Bacon, E. R.; Mallamo, J. P.; Ator, M. A.; Ruggeri, B. A. J. Med. Chem. 2012, 55, 903. 

    18. [18]

      Ruegg, U. T.; Burgess, G. M. Trends Pharmacol. Sci. 1989, 10, 218. 

    19. [19]

      Bharate, S. B.; Sawant, S. D.; Singh, P. P.; Vishwakarma, R. A. Chem. Rev. 2013, 113, 6761. 

    20. [20]

      Anastassiadis, T.; Deacon, S. W.; Devarajan, K.; Ma, H.; Peterson, J. R. Nat. Biotechnol. 2011, 29, 1039. 

    21. [21]

      Huang, Y. C.; Chao, D. K.; Chao, K. S. C.; Chen, Y. J. Toxicol. In Vitro 2009, 23, 979. 

    22. [22]

      Del Corral, A.; Dutreix, C.; Huntsman-Labed, A.; Lorenzo, S.; Morganroth, J.; Harrell, R.; Wang, Y. Cancer Chemother. Pharmacol. 2012, 69, 1255.

    23. [23]

      Fischer, T.; Stone, R. M.; Deangelo, D. J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E. J.; Schiller, G. J.; Klimek, V. M.; Nimer, S. D.; Gilliland, D. G.; Dutreix, C.; Huntsman-Labed, A.; Virkus, J.; Giles, F. J. J. Clin. Oncol. 2010, 28, 4339. 

    24. [24]

      Graul, A. I. Drug News Perspect. 2007, 20, 45.

    25. [25]

      Levis, M.; Allebach, J.; Tse, K. F., Zheng, R.; Baldwin, B. R.; Smith, B. D.; Jones-Bolin, S.; Ruggeri, B.; Dionne, C.; Small, D. Blood 2002, 99, 3885.

    26. [26]

      Diaz, T.; Navarro, A.; Ferrer, G.; Gel, B.; Gaya, A.; Artells, R.; Bellosillo, B.; Garcia-Garcia, M.; Serrano, S.; Martínez, A.; Monzo, M. PLoS One 2011, 6, e18856.

    27. [27]

      Marshall, J. L.; Kindler, H.; Deeken, J.; Bhargava, P.; Vogelzang, N. J.; Rizvi, N.; Luhtala, T.; Boylan, S.; Dordal, M.; Robertson, P.; Hawkins, M. J.; Ratain, M. J. Invest New Drugs 2005, 23, 31. 

    28. [28]

      Knapper, S.; Burnett, A. K.; Littlewood, T.; Kell, W. J.; Agrawal, S.; Chopra, R.; Clark, R.; Levis, M. J.; Small, D. Blood 2006, 108, 3262.

    29. [29]

      Mackay, H. J.; Twelves, C. J. Nat. Rev. Cancer 2007, 7, 554. 

    30. [30]

      Lee, K. W.; Kim, S. G.; Kim, H. P.; Kwon, E.; You, J.; Choi, H. J.; Park, J. H.; Kang, B. C.; Im, S. A.; Kim, T. Y.; Kim, W. H.; Bang, Y. J. Cancer Res. 2008, 68, 1916. 

    31. [31]

      Padda, S. K.; Krupitskaya, Y.; Chhatwani, L.; Fisher, G. A.; Colevas, A. D.; Pedro-Salcedo, M. S.; Decker, R.; Latz, J. E.; Wakelee, H. A. Cancer Chemother. Pharmacol. 2012, 69, 1013. 

    32. [32]

      Slater, M. J.; Baxter, R.; Bonser, R. W.; Cockerill, S.; Gohil, K.; Parry, N.; Robinson, E.; Randall, R.; Yeates, C.; Snowden, W.; Walters, A. Bioorg. Med. Chem. Lett. 2001, 11, 1993. 

    33. [33]

      Sanchez-Martinez, C.; Shih, C.; Zhu, G. X.; Li, T. C.; Brooks, H. B.; Patel, B. K.; Schultz, R. M.; DeHahn, T. B.; Spencer, C. D.; Watkins, S. A.; Ogg, C. A.; Considine, E.; Dempsey, J. A.; Zhang, F. M. Bioorg. Med. Chem. Lett. 2003, 13, 3841. 

    34. [34]

    35. [35]

      Davis, P. D.; Bit, R. A.; Hurst, S. A. Tetrahedron Lett. 1990, 31, 2353. 

    36. [36]

      Haddach, A. A.; Kelleman, A.; Deaton-Rewolinski, M. V. Tetrahedron Lett. 2002, 43, 399. 

    37. [37]

      Joyce, R. P.; Gainor, J. A.; Weinreb, S. M. J. Org. Chem. 1987, 52, 1177. 

    38. [38]

      Julia, M.; Tchernoff, G. Bull. Soc. Chim. Fr. 1960, 741.

    39. [39]

      Bocchi, V.; Casnati, G.; Dossena, A.; Villani, F. Synthesis 1976, 414.

    40. [40]

      Lakatosh, S. A.; Balzarini, J.; Andrei, G.; Snoeck, R.; Lakatosh, A.; De Clercq, E.; Preobrazhenskaya, M. N. J. Antibiot. 2002, 55, 768. 

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    11. [11]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(0)
  • Abstract views(929)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return