Citation: Cao Jingsi, Chen Feiwu. Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2463-2471. doi: 10.6023/cjoc201602026 shu

Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods

  • Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
  • Received Date: 26 February 2016
    Revised Date: 12 May 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos.21173020,21473008

Figures(9)

  • Natural population analysis (NPA) charge, Hirshfeld charge, electrostatic potential, average local ionization energy, orbital composition of lowest unoccupied molecular orbital (LUMO), condensed Fukui function and condensed dual descriptor were exploited to predict the reaction active sites of nucleophilic and electrophilic reactions of aromatic compounds. It was found that the predicted reaction sites of these methods were all in consistent with the experimental results. It was also found that the correlations of the prediction results of theoretical methods reflecting local hardness such as Hirshfeld charges and electrostatic potential with the experimental reaction rate were excellent no matter the reactions of aromatic compounds are nucleophilic or electrophilic. However, the prediction results of theoretical methods reflecting local softness such as the condensed Fukui function and the condensed dual descriptor were in poor correlation with the experimental reaction rates as unexpected.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

       

    4. [4]

      Esteves, P. M.; Carneiro, J. W. de M.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Oláh, G. A. J. Am. Chem. Soc. 2003, 125, 4836. 

    5. [5]

      Hänggi, P.; Talkner, P.; Borkovec, M. Rev. Mod. Phys. 1990, 62, 251. 

    6. [6]

      Zhang, J. Z. H. Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore, 1999. 

    7. [7]

       

    8. [8]

      Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153. 

    9. [9]

       

    10. [10]

      Lu, T.; Chen, F. W. J. Mol. Model 2013, 19, 5387.

    11. [11]

    12. [12]

      Liu, S. B.; Rong, C.; Lu, T. J. Phys. Chem. A 2014, 118, 3698.

    13. [13]

       

    14. [14]

      Wu, W. J.; Wu, Z. M.; Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216.

    15. [15]

      Wu, Z. M.; Rong, C. Y.; Lu, T.; Ayer, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052.

    16. [16]

      Liu, S. B. Acta Phys.-Chim. Sin. 2016, 32, 98.

    17. [17]

       

    18. [18]

      Cao, J. S.; Ren, Q.; Chen, F. W.; Lu, T. Sci. China Chem. 2015, 58, 1845. 

    19. [19]

      Ammer, J.; Nolte, C.; Mayr, H. J. Am. Chem. Soc. 2012, 134, 13902.

    20. [20]

      Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem.-Eur. J. 2013, 19, 249.

    21. [21]

      Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Angew. Chem., Int. Ed. 2008, 47, 202. 

    22. [22]

      March, J. Advanced Organic Chemistry:Reactions, Mechanisms and Structure, Vol. 4, Wiley-Interscience Publication, United States of America, 1992, pp. 505~510.

    23. [23]

      Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088. 

    24. [24]

      Westermaier, M.; Mayr, H. Org. Lett. 2006, 8, 4791. 

    25. [25]

      Kuivila, H. G.; Hendrickson, A. R. J. Am. Chem. Soc. 1952, 74, 5068. 

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

    27. [27]

      Axel, D.; Becke J. Chem. Phys. 1993, 98, 1372.

    28. [28]

      Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. 

    29. [29]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. 

    30. [30]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.

    31. [31]

      Alan, R. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83(2), 15.

    32. [32]

      Glendening, E. D.; Landis, C. R.; Weinhold, F. WIREs Comput. Mol. Sci. 2012, 2, 1. 

    33. [33]

      Nalewajski; Parr, R. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. 

    34. [34]

      Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Springer, Netherlands, 1980.

    35. [35]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. 

    36. [36]

      Liu, S. B. Acta Phys.-Chim. Sin. 2009, 25, 590. 

    37. [37]

      Geerlings, P.; Proft, De F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. 

    38. [38]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. 

    39. [39]

      Jin, J. L.; Li, H. B.; Lu, T.; Duan, Y. A.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mol. Model. 2013, 19, 3437. 

    40. [40]

      Chattaraj, P. K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A 2003, 107, 4973. 

    41. [41]

      Oláh, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106, 3885.

    42. [42]

       

    43. [43]

      Politzer, P.; Murray, J. S. In Reviews in Computational Chemistry, Vol. 2, Eds.:Lipkowitz, K. B.; Boyd, D. B., Wiley, New York, 1991, p. 273.

    44. [44]

      Politzer, P.; Murray, J. S. In Chemical Reactivity Theory:A Density Functional View, Ed.:Chattaraj, P. K., CRC Press, London, 2009, p. 243.

    45. [45]

      Geerlings, P.; Langenaeker, W.; Proft, D. F.; Baeten, A. Theor. Comput. Chem. 1996, 3, 587.

    46. [46]

      Politzer, P.; Murray, J. S.; Concha, M. C. Int. J. Quantum Chem. 2002, 88, 19. 

    47. [47]

      Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ. Health Perspect. 1985, 61, 191. 

    48. [48]

      Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94, 3959. 

    49. [49]

      Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968. 

    50. [50]

      Lu, T.; Chen, F. W. J. Mol. Graphics Modell. 2012, 38, 314.

    51. [51]

      Murray, J. S.; Peralta-Inga, Z.; Politzer, P.; Ekanayake, K.; LeBreton, P. Int. J. Quantum Chem. 2001, 83, 245. 

    52. [52]

      Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. Can. J. Chem. 1990, 68, 1440. 

    53. [53]

      Politzer, P.; Murray, J. S. In Theoretical Aspects of Chemical Reactivity, Ed.:Toro-Labbé, A., Elsevier, Amsterdam, 2007, p. 119.

    54. [54]

      Fukui, K. Theory of Orientation and Stereoselection, Springer, Berlin, 2013.

    55. [55]

      Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.

  • 加载中
    1. [1]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Jian Huang Mingjue Zhang Shangchu Ma Jia Dong Guanzi Wu Aiming Wen Zhuoliang Liu . Data-Driven Approach for the Determination of Chemical Reaction Rate Constant. University Chemistry, 2026, 41(1): 213-226. doi: 10.12461/PKU.DXHX202505110

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    11. [11]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    12. [12]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    13. [13]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    16. [16]

      Kezhen QiBei ChengKaiqiang Xu . Ultrafast interfacial charge transfer promoted by the LSPR of Au nanoparticles for photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(3): 100205-0. doi: 10.1016/j.actphy.2025.100205

    17. [17]

      Yiying Yang Rongxiu Zhu Yuchen Ma Dongju Zhang . MATLAB-based Visualization of Hydrogen-Like Orbitals and Analysis of Relavant Teaching Problems. University Chemistry, 2025, 40(9): 375-382. doi: 10.12461/PKU.DXHX202411015

    18. [18]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    19. [19]

      Ping Che Mingwen Wang . Exploration of Hybrid Orbital Theory Teaching Based on the “FiveQuestion” Model. University Chemistry, 2026, 41(2): 119-122. doi: 10.12461/PKU.DXHX202503063

    20. [20]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(8732)
  • HTML views(1986)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return