Citation: Li Yunlu, Xue Mei, Wang Jianlong, Cao Duanlin, Ma Zhongliang. Advances in the Synthesis of Poly-nitro Furazans[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1528-1538. doi: 10.6023/cjoc201602011 shu

Advances in the Synthesis of Poly-nitro Furazans

  • Corresponding author: Ma Zhongliang, mazhongliang@nuc.edu.cn
  • Received Date: 16 February 2016
    Revised Date: 15 March 2016

    Fund Project: the Science Research Foundation for Graduate Students of North University of China No. 20151227

Figures(20)

  • The study of poly-nitro furazans in the field of energetic materials is very active, and many great advances have been made. According to other achievements in recent years, classified as single furazans, double furazans and other furazans by molecular structure, a large amount of poly-nitro furazans are summarized for the advances in certain aspect of synthesis. The properties and main applications of some important compounds are also introduced briefly.
  • 加载中
    1. [1]

      Hunter, S.; Coster, P. L.; Davidson, A. J.; Millar, D. I. A.; Parker, S. F.; Marshall, W. G.; Smith, R. I.; M. C. A.; Pulham, C. R. J. Phys. Chem. C 2015, 119, 2322. 

    2. [2]

      Liu, X.; Su, Z.; Ji, W.; Chen, S.; Wei, Q.; Xie, G.; Yang, X.; Gao, S. J. Phys. Chem. C 2014, 118, 23487. 

    3. [3]

      Tsyseveky, R.; Pagoria, P.; Zhang, M.; Racoveanu, A.; DeHope, A.; Parrish, D. A.; Kukjja, M. M. J. Phys. Chem. C 2015, 119, 3509. 

    4. [4]

      Zhang, J.; Parish, D. A.; Shreeve. J. M. Chem. Asian. J. 2014, 9, 2953. 

    5. [5]

      Brinck, T. Green Energetic Materials, John Wiley & Sons, 2014, p. 11.

    6. [6]

      Thao, V. T.; Zhang, J.; Parrish, D. A.; Twamley, B.; Shreeve, J. M. J. Am. Chem. Soc. 2013, 13, 11787.

    7. [7]

    8. [8]

      Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289. 

    9. [9]

      Talawar, M. B.; Sivabalan, R.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Hazard. Mater. 2009, 161, 589. 

    10. [10]

      Schmitt, D.; Eyerer, P.; Elsner, P. Propellents, Explos., Pyrotech. 1997, 22, 109. 

    11. [11]

      Talawar, M. B.; Agrawal, A. P.; Anniyappan, M.; Wani, D. S.; Bansode, M. K.; Gore, G. M. J. Hazard. Mater. 2006, 137, 1074. 

    12. [12]

      Fried, L. E.; Ruggiero, A. J. J. Phys. Chem. 1994, 98, 9786. 

    13. [13]

      Meyers, S.; Shanley, E, S. J. Hazard. Mater. 1990, 23, 183. 

    14. [14]

      Boehmlein, M. J.; Kroeber, H. Propellants, Explos., Pyrotech. 2009, 34, 239. 

    15. [15]

      Thottempudi, V.; Yin, P.; Zhang, J.; Parrish, D. A.; Shreeve, J. M. Chem.-Eur. J. 2014, 20, 542. 

    16. [16]

      Veauthier, J. M.; Chavez, D. E.; Tappan, B. C.; Parrish, D. A. J. Energy. Mater. 2010, 28, 229. 

    17. [17]

      Aleksei, B. S.; Nataly, S. A.; Nadezhda, V. P.; Marina, I. S.; Vladimir, A. T.; Kyrill, Y. S. Chem.-Eur. J. 2013, 19, 12446. 

    18. [18]

      Yu, Q.; Wang, Z. X.; Wu, B.; Yang, H. W.; Ju, X. H.; Lu, C. X.; Cheng, G. B. J. Mater. Chem. A. 2015, 3, 8156. 

    19. [19]

    20. [20]

      Zhang, J.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437. 

    21. [21]

      Ye, C.; Gao, H.; Shreeve, J. M. J. Fluorine Chem. 2007, 128, 1410. 

    22. [22]

      Sheremetev, A. B.; Yudin, I. L.; Suponitsky, K. Y. Mendeleev Commun. 2006, 16, 264. 

    23. [23]

      Romanova, T. V.; Zelenov, M. P.; Melnikova, S. F.; Tselinsky, I. V. Russ. Chem. Bull. 2009, 58, 2188. 

    24. [24]

      Sheremetev, A. B.; Aleksandrova, N. S.; Palysaeva, N. V.; Struchkova, M. I.; Tartakovsky, V. A.; Suponitsky, K. Y. Chem.-Eur. J. 2013, 19, 12446. 

    25. [25]

      Gao, H.; Shreeve, J. M. RSC Adv. 2014, 4, 24874. 

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

      Tat'yana, S. N.; Tat'yana, M. M.; Olga, V. K.; Valentina, O. K.; Natal'ya, S. A.; Sheremetev, A. B.; Tat'yana, S. P.; Lenor, I. K.; Serfei, S. N. Mendeleev Commun. 1994, 4, 138. 

    34. [34]

      Qiu, S., Ge, Z., Jiang, J., Guo, T., Lian, P.; Gan, X. Asian J. Chem. 2012, 24, 1453.

    35. [35]

      Ren, H. P., Liu, Z. W., Lu, J.; Liu, Z. T. Ind. Eng. Chem. Res. 2011, 50, 6615. 

    36. [36]

      Tselinskii, I. V.; Mel'nikova, S. F.; Vergizov, S. N. Russ. J. Org. Chem. 1995, 31, 1125.

    37. [37]

      Sheremetev, A. B.; Aleksei, B.; Aleksandrova, N. S.; Suponitsky, K. Y.; Antipin, M, Y.; Tartakovsky, V. A. Mendeleev Commun. 2010, 20, 249. 

    38. [38]

      Zelennov, V. P.; Lobanova, A. A. Russ. Chem. Bull. 2013, 60, 334.

    39. [39]

      Zhang, C. Y. J. Mol. Struct.: THEOCHEM 2006, 765, 77. 

    40. [40]

      Zhang X. W.; Zhu W. H.; Xiao H. M. Int. J. Quantum Chem. 2010, 110, 1549.

    41. [41]

      Sheremetev, A. B.; Aleksandrova, N. S.; Palysaeva, N. V.; Struchkova, M. I.; Tartakovsky, V. A.; Suponitsky, K. Y. Chem.-Eur. J. 2013, 19, 12446. 

    42. [42]

      Chavez, D.; Klapötke, T. M.; Parrish, D.; Piercey, D. G.; Stierstorfer, J. Propellants, Explos. Pyrotech. 2014, 39, 641. 

    43. [43]

      Yu, Q.; Wang, Z.-X.; Wu, B.; Yang, H.; Ju, X.; Lu, C.-X.; Cheng, G.-B. J. Mater. Chem. A 2015, 3, 8156.

    44. [44]

    45. [45]

      DeHope, A.; Pagoria, P. F.; Parrish, D. Lawrence Livemore National Laboratory, 2013.

    46. [46]

      Fischer, N.; Fischer, D.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. J. Mater. Chem A 2015, 3, 8156. 

    47. [47]

      Nilo, F.; Dennis, F.; Thoma, M. K.; Davin, G. P.; Jörg, S. J. Mater. Chem. 2012, 22, 20418. 

    48. [48]

      Li, L. X.; Cao, D.; Song, J. H.; Huang, H. F.; Wang, K.; Bian, C. M.; Dong, X.; Zhou, Z. M. J. Mater. Chem. A 2013, 1, 8857. 

    49. [49]

      Cobum, M. D. J. Hazard. Mater. 1986, 5, 83.

    50. [50]

      Coburn, M. D. J. Labelles. Compd. Rad. 1985, 22, 183. 

    51. [51]

      Dennis, F.; Thomas, K. M.; Reymann, M.; Jörg, S. Chem.-Eur. J. 2014, 20, 6401. 

    52. [52]

      Zhang, X. W.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. A 2010, 114, 603. 

    53. [53]

      Solodyuk, G. D.; Boldyrev, M. D.; Gidaspov, B. V.; Nikolaev, V. D. Zh. Org. Khim. 1981, 17, 861.

    54. [54]

      Michael, A. H.; David, E.; Chavez, R. L.; Bishop, J. F.; Kramer, S. A. US 6358339, 2002 [Chem. Abstr. 2002, 136, 234292].

    55. [55]

    56. [56]

      Kharitonova, O. V.; Kulagina, V. O.; Sheremetev, A. B.; Khmel'nitskii, L. I.; Novikov, S. S. Mendleev Commun. 1994, 4, 138. 

    57. [57]

      Li, H. Z. Proc. 39th Int. Annaul Conf. ICT, Karlsruhe, Germany, 2008, 42, p. 1.

    58. [58]

      Batog, L. V.; Konstantinova, L. S.; Kulikov, A. S.; Makhova, N. N. Russ. Chem. Bull. 2013, 62, 1388. 

    59. [59]

      Yu, Q.; Wang, Z. X.; Wu, B.; Yang, H. W.; Ju, X. H.; Lu, C. X.; Cheng, G. B. J. Mater. Chem. A 2015, 3, 8156. 

    60. [60]

      Suponitsky, K. Y.; Lyssenko, K. A.; Antipin, M. Y.; Aleksandrova, N. S.; Shreeve, J. M.; Novikova, T. S. Russ. Chem. Bull., Int. Ed. 2009, 58, 2129. 

    61. [61]

      Zhang, J. H.; Shreeve, J. M. J. Phys. Chem. C 2015, 119, 12887.

    62. [62]

    63. [63]

    64. [64]

    65. [65]

      Shermetev, A. B.; Kharitonova, O. V.; Mel'nikova, T. M.; Novikova, T. S.; Kuz'min, V. S.; Khmel'nitskii, L. I. Mendleev Commun. 1996, 6, 141. 

    66. [66]

    67. [67]

      Sheremetev, A. B.; Aleksandrova, N. S.; Melnikova, T. M.; Novikova, T. S.; Strelenko, Y. A.; Dmitriev, D. E. J. Hazard. Mater. 2000, 11, 48.

    68. [68]

      Sheremetev, A. B.; Semenov, S. E.; Kuzmin, V. S.; Strelenko, Y. A.; Loffe, S. L. Chem.-Eur. J. 1998 , 4, 1023.

    69. [69]

      Sheremetev A. B. Proc. 29th Int. Annaul Conf. ICT, Karlsruhe, Germany, 1998, 58, 1.

    70. [70]

    71. [71]

    72. [72]

    73. [73]

      Zhai, L. J.; Wang, B. Z. J. Energ. Mater. 2016, 34, 92. 

    74. [74]

    75. [75]

    76. [76]

    77. [77]

      Liu, N.; Shu, Y. J.; Li, H.; Zhai, L. J.; Li, Y. N.; Wang, B. Z. RSC Adv. 2015, 5, 43780. 

    78. [78]

      Sheremetev, A. B.; Kharitonova, O. V.; Mantseva, E. V.; Kulagina, V. O.; Shatunova, E. V.; Aleksandrova, N. S.; Yundin, I. L. Russ J. Org. Chem. 1999, 35, 1525.

    79. [79]

    80. [80]

      Hu, H. X. CN 02101092.7, 2002.

    81. [81]

  • 加载中
    1. [1]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    2. [2]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    18. [18]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(0)
  • Abstract views(3893)
  • HTML views(795)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return