Citation: Shi Bochao, Fang Yewen, Zhang Li, Jin Xiaoping, Wu Yonghui, Fang Mei, Yang Yufei, Chen Chong. Advances in the Synthesis of α-Aryl Vinylphosphonates[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 673-686. doi: 10.6023/cjoc201601023 shu

Advances in the Synthesis of α-Aryl Vinylphosphonates

  • Corresponding author: Fang Yewen,  Jin Xiaoping, 
  • Received Date: 18 January 2016
    Available Online: 29 February 2016

    Fund Project: 国家自然科学基金(No.21202090) (No.21202090)浙江省自然科学基金(No.LQ13B010004) (No.LQ13B010004)国家大学生创新创业训练计划(No.201411058005) (No.201411058005)新苗人才计划(No.2015R424004) (No.2015R424004)宁波市科技创新团队(No.2011B82002)资助项目. (No.2011B82002)

  • α-Aryl vinylphosphonates are an important class of organophosphorus compounds and synthetic intermediates for other organophosphorus molecules. The progress of transition-metal-catalyzed synthesis of α-aryl vinylphosphonates including hydrophosphorylation reactions, C-C cross-coupling reactions and C-P cross-coupling reactions is reviewed. The synthetic methods under metal-free conditions are also summarized. The organic transformations of α-aryl vinylphosphonates and their applications in the synthesis of fosmidomycin analogues are also highlighted.
  • 加载中
    1. [1]

      [1] (a) Li, S.-N.; Xu, L.-T.; Chen, Y.; Li, J.-L.; He, L. Lett. Org. Chem. 2011, 8, 416.

    2. [2]

      (b) Wang, H.-Q.; Liu, Z.-J. Chin. J. Org. Chem. 2003, 23, 321 (in Chinese). (王宏青, 刘钊杰, 有机化学, 2003, 23, 321.)

    3. [3]

      (c) Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.

    4. [4]

      [2] Welton, T. Chem. Rev. 1999, 99, 2071.

    5. [5]

      [3] (a) Hayes, B. L. Aldrichim. Acta 2004, 37, 66.

    6. [6]

      (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.

    7. [7]

      [4] Iorga, B.; Eymery, F.; Carmichael, D.; Savignac, P. Eur. J. Org. Chem. 2000, 3103.

    8. [8]

      [5] (a) Dong, K.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2012, 134, 12474.

    9. [9]

      (b) Wang, D.-Y.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2009, 74, 4408.

    10. [10]

      (c) Krueger, W. E.; McLean, M. B.; Rizwaniuk, A.; Maloney, J. R.; Behelfer, G. L.; Boland, B. E. J. Org. Chem. 1978, 43, 2877.

    11. [11]

      (d) Russell, G. A.; Yao, C.-F. J. Org. Chem. 1992, 57, 6508.

    12. [12]

      [6] Li, S.-N.; Xu, L.-T.; He, L. Chin. J. Synth. Chem. 2011, 19, 520 (in Chinese).
      (李盛男, 徐兰婷, 何菱, 合成化学, 2011, 19, 520.)

    13. [13]

      [7] Chen, H.-X.; Huang, L.-J.; Liu, J.-B.; Weng, J.; Lu, G. Phosphorus, Sulfur Silicon Relat. Elem. 2014, 189, 1858.

    14. [14]

      [8] Sobhani, S.; Honarmand, M. Synlett 2013, 24, 236.

    15. [15]

      [9] (a) Creary, X.; Geiger, C. C.; Hilton, K. J. Am. Chem. Soc. 1983, 105, 2851.

    16. [16]

      (b) Russell, G. A.; Ngoviwatchai, P. J. Org. Chem. 1989, 54, 1836.

    17. [17]

      [10] (a) Yamashita, M.; Kojima, M.; Yoshida, H.; Ogata, T.; Inokawa, S. Bull. Chem. Soc. Jpn. 1980, 53, 1625.

    18. [18]

      (b) Lahrache, H.; Robin, S.; Rousseau, G. Tetrahedron Lett. 2005, 46, 1635.

    19. [19]

      [11] Conant, J. B.; Coyne, B. B. J. Am. Chem. Soc. 1922, 44, 2530.

    20. [20]

      [12] (a) Karimov, K. R.; Shakhidoyatov, K. M.; Alovitdinov, A. B.; Kuchkarov, A. B. Zh. Obshch. Khim. 1984, 54, 2393.

    21. [21]

      (b) Goulioukina, N. S.; Dolgina, T. M.; Beletskaya, I. P.; Henry, J.-C.; Lavergne, D.; Ratovelomanana-Vidal, V.; Genêt, J.-P. Tetrahedron: Asymmetry 2001, 12, 319.

    22. [22]

      [13] Krawczyk, H.; Koszuk, J.; Bodalski, R. Pol. J. Chem. 2000, 74, 1123.

    23. [23]

      [14] Srinivas, V.; Sajna, K. V.; Kumara Swamy, K. C. Chem. Commun. 2011, 47, 5629.

    24. [24]

      [15] Minbaev, B. U.; Yashnova, N. I.; Abiyurov, B. D. Zh. Obshch. Khim. 1989, 59, 1913.

    25. [25]

      [16] Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.

    26. [26]

      [17] Han, L.-B.; Hua, R.; Tanaka, M. Angew. Chem., Int. Ed. 1998, 37, 94.

    27. [27]

      [18] Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.

    28. [28]

      [19] Xu, Q.; Shen, R.; Ono, Y.; Nagahata, R.; Shimada, S.; Goto, M.; Han, L.-B. Chem. Commun. 2011, 47, 2333.

    29. [29]

      [20] Han, L.-B.; Ono, Y.; Shimada, S. J. Am. Chem. Soc. 2008, 130, 2752.

    30. [30]

      [21] (a) Khemchyan, L. L.; Ivanova, J. V.; Zalesskiy, S. S.; Ananikov, V. P.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2014, 356, 771.

    31. [31]

      (b) Trostyanskaya, I. G.; Beletskaya, I. P. Tetrahedron 2014, 70, 2556.

    32. [32]

      (c) Ananikov, V. P.; Makarov, A. V.; Beletskaya, I. P. Chem. Eur. J. 2011, 17, 12623.

    33. [33]

      (d) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2010, 352, 2979.

    34. [34]

      (e) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P. Russ. J. Org. Chem. 2010, 46, 1269.

    35. [35]

      (f) Gulyukina, N. S.; Beletskaya, I. P. Russ. J. Org. Chem. 2010, 46, 781.

    36. [36]

      (g) Gulyukina, N. S.; Dolgina, T. M.; Bondarenko, G. N.; Beletskaya, I. P. Russ. J. Org. Chem. 2003, 39, 797.

    37. [37]

      [22] Dondoni, A.; Marra, A. Org. Biomol. Chem. 2015, 13, 2212.

    38. [38]

      [23] Fadel, A; Legrand, F.; Evano, G.; Rabasso, N. Adv. Synth. Catal. 2011, 353, 263.

    39. [39]

      [24] Lai, C.; Xi, C.; Chen, C.; Ma, M.; Hong, X. Chem. Commun. 2003, 2736.

    40. [40]

      [25] (a) Gildner, P. G.; Colacot, T. J. Organometallics 2015, 34, 5497.

    41. [41]

      (b) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.

    42. [42]

      [26] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

    43. [43]

      (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.

    44. [44]

      (c) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.

    45. [45]

      [27] (a) Pergament, I.; Srebnik, M. Org. Lett. 2001, 3, 217.

    46. [46]

      (b) Pergament, I.; Srebnik, M. Tetrahedron Lett. 2001, 42, 8059.

    47. [47]

      [28] (a) Heravi, M. M.; Hashemi, E.; Azimian, F. Tetrahedron 2014, 70, 7.

    48. [48]

      (b) Pattenden, G.; Sinclair, D. J. J. Organomet. Chem. 2002, 653, 261.

    49. [49]

      [29] Kouno, R.; Okauchi, T.; Nakamura, M.; Ichikawa, J.; Minami, T. J. Org. Chem. 1998, 63, 6239.

    50. [50]

      [30] (a) Huang, X.; Xiong, Z. C. Synth. Commun. 2003, 33, 2511.

    51. [51]

      (b) Xiong, Z. C.; Wu, L. L.; Huang, X. Chin. Chem. Lett. 2004, 15, 35.

    52. [52]

      (c) Xiong, Z. C.; Huang, X. J. Chem. Res., Synop. 2003, 372.

    53. [53]

      [31] Jena, N.; Kazmaier, U. Eur. J. Org. Chem. 2008, 3852.

    54. [54]

      [32] (a) Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456.

    55. [55]

      (b) Konno, T.; Morigaki, A.; Ninomiya, K.; Miyabe, T.; Ishihara, T. Synthesis 2008, 564.

    56. [56]

      [33] (a) Kobayashi, Y.; William, A. D. Org. Lett. 2002, 4, 4241.

    57. [57]

      (b) Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.

    58. [58]

      [34] Fang, Y.; Zhang, L.; Jin, X.; Li, J.; Yuan, M.; Li, R.; Gao, H.; Fang, J.; Liu, Y. Synlett 2015, 26, 980.

    59. [59]

      [35] (a) Fang, Y.; Zhang, L.; Jin, X.; Li, J.; Yuan, M.; Li, R.; Wu, R.; Gao, H.; Fang, J. Org. Lett. 2015, 17, 798.

    60. [60]

      (b) Fang, Y.; Zhang, L.; Jin, X.; Li, J.; Yuan, M.; Li, R.; Wang, T.; Wang, T.; Hu, H.; Gu, J. Eur. J. Org. Chem. 2016, 1577.

    61. [61]

      [36] Högermeier, J.; Reissig, H.-U. Adv. Synth. Catal. 2009, 351, 2747.

    62. [62]

      [37] (a) Inoue, S.; Okauchi, T.; Minami, T. Synthesis 2003, 1971.

    63. [63]

      (b) Okauchi, T.; Yano, T.; Fukamachi, T.; Ichikawa, J.; Minami, T. Tetrahedron Lett. 1999, 40, 5337.

    64. [64]

      [38] Yuan, M.; Fang, Y.; Zhang, L.; Jin, X.; Tao, M.; Ye, Q.; Li, R.; Li, J.; Zheng, H.; Gu, J. Chin. J. Chem. 2015, 33, 1119.

    65. [65]

      [39] (a) Barluenga, J.; Valdés, C. Angew. Chem., Int. Ed. 2011, 50, 7486.

    66. [66]

      (b) Xu, K.; Shen, C.; Shan, S. Chin. J. Org. Chem. 2015, 35, 294 (in Chinese).
      (许恺, 沈冲, 单尚, 有机化学, 2015, 35, 294.)

    67. [67]

      (c) Liu, Z.; Zhang, Y.; Wang, J. Chin. J. Org. Chem. 2013, 33, 687 (in Chinese).
      (刘振兴, 张艳, 王剑波, 有机化学, 2013, 33, 687.)

    68. [68]

      [40] Zhou, Y.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 6109.

    69. [69]

      [41] (a) Yang, L.; Qi, X.; Xu, L. Prog. Chem. 2011, 23, 893 (in Chinese). (杨连成, 齐向阳, 徐龙鹤, 化学进展, 2011, 23, 893.)

    70. [70]

      [42] Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 3595.

    71. [71]

      [43] Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637.

    72. [72]

      [44] Kazankova, M. A.; Trostyanskaya, I. G.; Lutsenko, S. V.; Beletskaya, I. P. Tetrahedron Lett. 1999, 40, 569.

    73. [73]

      [45] Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberg, P. J. R.; Larhed, M. Chem. Eur. J. 2009, 15, 13069.

    74. [74]

      [46] Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729.

    75. [75]

      [47] Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315.

    76. [76]

      [48] (a) Gui, Q.; Hu, L.; Chen, X.; Liu, J.; Tan, Z. Chem. Commun. 2015, 51, 13922.

    77. [77]

      (b) Xue, J.-F.; Zhou, S.-F.; Liu, Y.-Y.; Pan, X.; Zou, J.-P.; Asekun, O. T. Org. Biomol. Chem. 2015, 13, 4896.

    78. [78]

      [49] (a) Jiao, X.-Y.; Bentrude, W. G. J. Am. Chem. Soc. 1999, 121, 6088.

    79. [79]

      (b) Jiao, X.-Y.; Bentrude, W. G. J. Org. Chem. 2003, 68, 3303.

    80. [80]

      [50] Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.

    81. [81]

      [51] Axelrad, G.; Laosooksathit, S.; Engel, R. J. Org. Chem. 1981, 46, 5200.

    82. [82]

      [52] Ma, S.; Guo, H.; Yu, F. J. Org. Chem. 2006, 71, 6634.

    83. [83]

      [53] Guo, H.; Zheng, Z.; Yu, F.; Ma, S.; Holuigue, A.; Tromp, D. S.; Elsevier, C. J.; Yu, Y. Angew. Chem., Int. Ed. 2006, 45, 4997.

    84. [84]

      [54] Cho, I. S.; Alper, H. J. Org. Chem. 1994, 59, 4027.

    85. [85]

      [55] Henry, J.-C.; Lavergne, D.; Ratovelomanana-Vidal, V.; Genet, J.-P.; Beletskaya, I. P.; Dolgina, T. M. Tetrahedron Lett. 1998, 39, 3473.

    86. [86]

      [56] (a) Goulioukina, N. S.; Dolgina, T. M.; Bondarenko, G. N.; Beletskaya, I. P.; Ilyin, M. M.; Davankov, V. A.; Pfaltz, A. Tetrahedron: Asymmetry 2003, 14, 1397.

    87. [87]

      (b) Cheruku, P.; Paptchikhine, A.; Church, T. L.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8285.

    88. [88]

      (c) Konno, T.; Shimizu, K.; Ogata, K.; Fukuzawa, S. J. Org. Chem. 2012, 77, 3318.

    89. [89]

      [57] Fang, Y.; Yuan, M.; Jin, X.; Zhang, L.; Li, R.; Yang, S.; Fang, M. Tetrahedron Lett. 2016, 57, 1368.

    90. [90]

      [58] Ono, Y.; Han, L.-B. Tetrahedron Lett. 2006, 47, 421.

    91. [91]

      [59] (a) Tarabay, J.; Al-Maksoud, W.; Jaber, F.; Pinel, C.; Prakash, S.; Djakovitch, L. Appl. Catal. A-Gen. 2010, 388, 124.

    92. [92]

      (b) Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222.

    93. [93]

      (c) Brunner, H.; Le Cousturier de Courcy, N.; Genét, J.-P. Synlett 2000, 201.

    94. [94]

      (d) Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.

    95. [95]

      (e) Xu, Y.; Jin, X.; Huang, G.; Huang, Y. Synthesis 1983, 556.

    96. [96]

      [60] Demik, N. N.; Kabachnik, M. M.; Novikova, Z. S.; Beletskaya, I. P. Zh. Org. Khim. 1995, 31, 64.

    97. [97]

      [61] Gulyukina, N. S.; Varakuta, A. V.; Beletskaya, I. P. Russ. Chem. Bull. 2007, 56, 1884.

    98. [98]

      [62] (a) Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 13.

    99. [99]

      (b) Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 24.

    100. [100]

      [63] Jomaa, H.; Wiesner, J.; Sanderbrand, S.; Altincicek, B.; Weidemeyer, C.; Hintz, M.; Turbachova, I.; Eberl, M.; Zeidler, J.; Lichtenthaler, H. K.; Soldati, D.; Beck, E. Science 1999, 285, 1573.

    101. [101]

      [64] Devreux, V.; Wiesner, J.; Jomaa, H.; Rozenski, J.; Van der Eycken, J.; Van Calenbergh, S. J. Org. Chem. 2007, 72, 3783.

    102. [102]

      [65] Sajna, K. V.; Srinivas, V.; Kumara Swamy, K. C. Adv. Synth. Catal. 2010, 352, 3069.

    103. [103]

      [66] Anderson, N. G. Org. Process Res. Dev. 2012, 16, 852.

  • 加载中
    1. [1]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    12. [12]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    13. [13]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    14. [14]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(1)
  • Abstract views(1079)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return