Citation: Li Xiaowei, Zhou Jin, Zhuo Shuping. Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1484-1500. doi: 10.6023/cjoc201601022 shu

Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions

  • Corresponding author: Zhuo Shuping, zhuosp_academic@yahoo.com
  • Received Date: 18 January 2016
    Revised Date: 6 March 2016

    Fund Project: the National Natural Science Foundation of China Nos. 51502162, 21576159the Open Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University No. SKLCC1613

Figures(1)

  • The supported N-heterocyclic carbene (NHC) catalysts have been extensively applied in the catalysis of different organic reactions due to its unique characteristic such as high reactivity, easy separation, purification and recyclability. In this paper, the recent progresses in synthesis and application of supported N-heterocyclic carbene metal complexes based on various types of supports, such as polymer, magnetic nanoparticles, carbon and silica material have been reviewed.
  • 加载中
    1. [1]

      Öfele, K. J. J. Organomet. Chem. 1968, 12, 42. 

    2. [2]

      Wanzlick, H. W.; Schönherr, H. J. Angew. Chem., Int. Ed. Engl. 1968, 7, 141.

    3. [3]

      Arduengo, A. J.; Harlow, R. L.; Kilne, M. J. Am. Chem. Soc. 1991, 113, 361. 

    4. [4]

       

    5. [5]

       

    6. [6]

      Yang, H.-Q.; Wang, Y.-W.; Qin, Y.; Chong, Y.-Z.; Yang, Q.-Z.; Li, G.; Zhang, L.; Li, W. Green Chem. 2011, 13, 1352.

    7. [7]

      Bru, M.; Dehn, R.; Teles, J. H.; Deuerlein, S.; Danz, M.; Müller, I. B.; Limbach, M. Chem. Eur. J. 2013, 19, 11661. 

    8. [8]

      Molnár, Á. Chem. Rev. 2011, 111, 2251.

    9. [9]

      Ranganath, K. V. S.; Onitsuka, S.; Kumar, A. K.; Inanaga, J. Catal. Sci. Technol. 2013, 3, 2161.

    10. [10]

      Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773. 

    11. [11]

      Byun, J. W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837. 

    12. [12]

      Lee, D. H.; Kim, J. H.; Jun, B. H.; Kang, H.; Park, J.; Lee, Y. S. Org. Lett. 2008, 10, 1609. 

    13. [13]

      Kim, J. W.; Kim, J. H.; Lee, D. H.; Lee, Y. S. Tetrahedron Lett. 2006, 47, 4745. 

    14. [14]

      Kim, J. H.; Kim, J. W.; Shokouhimehr, M.; Lee, Y. S. J. Org. Chem. 2005, 70, 6714. 

    15. [15]

      Kim, J. H.; Lee, D. H.; Jun, B. H.; Lee, Y. S. Tetrahedron Lett. 2007, 48, 7079. 

    16. [16]

      Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977. 

    17. [17]

      Yan, C.; Zeng, X.-M.; Zhang, W.-F.; Luo, M.-M. J. Organomet. Chem. 2006, 691, 3391.

    18. [18]

      Gil, W.; Boczoń, K.; Trzeciak, A. M.; Ziółkowski, J. J.; Garcia- Verdugo, E.; Luis, S. V.; Sans, V. J. Mol. Catal. A: Chem. 2009, 309, 131. 

    19. [19]

      Jafarpour, L.; Heck, M. P.; Baylon, C.; Lee, H. M.; Mioskowski, C.; Nolan, S. P. Organometallics 2002, 21, 671. 

    20. [20]

      Yao, Q.-W.; Zhang, Y.-L. J. Am. Chem. Soc. 2004, 126, 74. 

    21. [21]

      Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Synlett 2005, 2948. 

    22. [22]

      Qureshi, Z. S.; Deshmukh, K. M.; Tambade, P. J.; Bhanage, B. M. Synthesis 2011, 243.

    23. [23]

      Bagal, D. B.; Watile, R. A.; Khedkar, M. V.; Dhake, K. P.; Bhanage, B. M. Catal. Sci. Technol. 2012, 2, 354. 

    24. [24]

      Qureshi, Z. S.; Revankar, S. A.; Khedkar, M. V.; Bhanage, B. M. Catal. Today 2012, 198, 148. 

    25. [25]

      He, Y.; Cai, C. Chem. Commun. 2011, 47, 12319.

    26. [26]

      Bergbreiter, D. E.; Su, H. L.; Koizumi, H.; Tian, J.-H. J. Organomet. Chem. 2011, 696, 1272. 

    27. [27]

      Yu, T.; Li, Y.; Yao, C.-F.; Wu, H.-H.; Liu, Y.-M.; Wu, P. Chin. J. Catal. 2011, 32, 1712.

    28. [28]

      Lin, M.-J.; Wang, S.-J.; Zhang, J.-Y.; Luo, W.-J.; Liu, H.-L.; Wang, W.; Su, C.-Y. J. Mol. Catal. A: Chem. 2014, 394, 33.

    29. [29]

      Xu, S.-J.; Song, K.-P.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272. 

    30. [30]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. Appl. Organomet. Chem. 2015, 29, 678. 

    31. [31]

      Wang, X.-X.; Hu, P.-B.; Xue, F.-J.; Wei, Y.-P. Carbohydr. Polym. 2014, 114, 476.

    32. [32]

      Stevens, P. D.; Li, G.-F.; Fan, J.-D.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435.

    33. [33]

      Ranganath, K. V. S.; Schäfer, A. H.; Glorius, F. ChemCatChem 2011, 3, 1889. 

    34. [34]

      Wittmann, S.; Majoral, J. P.; Grass, R. N.; Stark, W. J.; Reiser, O. Green Process. Synth. 2012, 1, 275.

    35. [35]

      Ghotbinejad, M.; Khosropour, A. R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. J. Mol. Catal. A: Chem. 2014, 385, 78. 

    36. [36]

      Zhao, H.-X.; Li, L.-Y.; Wang, J.-Y.; Wang, R.-H. Nanoscale 2015, 7, 3532.

    37. [37]

      Wang, Z.; Yu, Y.; Zhang, Y.-X.; Li, S.-Z.; Qian, H.; Lin, Z.-Y. Green Chem. 2015, 17, 413.

    38. [38]

      Iglesias, D.; Sabater, S.; Azua, A.; Mata, J. A. New J. Chem. 2015, 39, 6437. 

    39. [39]

      Shang, N.-Z.; Gao, S.-T.; Feng, C.; Zhang, H.-Y.; Wang, C.; Wang, Z. RSC Adv. 2013, 3, 21863.

    40. [40]

      Park, J. H.; Raza, F.; Jeon, S. J.; Kim, H. I.; Kang, T. W.; Yim, D. B.; Kim, J. H. Tetrahedron Lett. 2014, 55, 3426. 

    41. [41]

      Movaherd, S. K.; Esmatpoursalmani, R.; Bazgir, A. RSC Adv. 2014, 4, 14586. 

    42. [42]

      Sabater, S.; Mata, J. A.; Peris, E. ACS Catal. 2014, 4, 2038. 

    43. [43]

      Sabater, S.; Mata, J. A.; Peris, E. Organometallics 2015, 34, 1186. 

    44. [44]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. Carbon 2015, 83, 21.

    45. [45]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández- Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. ACS Catal. 2013, 3, 1307.

    46. [46]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Blasco, j.; Subías, G.; Cuartero, V.; Oro, L. A.; Menéndez, R. Carbon 2016, 96, 66.

    47. [47]

      Zhao, Y.-H.; Zhou, Y.-Y.; Ma, D.-D.; Liu, J.-P.; Li, L.; Zhang, T.-Y.; Zhang, H.-B. Org. Biomol. Chem. 2003, 1, 1643.

    48. [48]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Organometallics 2010, 29, 4491.

    49. [49]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Green Chem. 2011, 13, 2471.

    50. [50]

      Dastgir, S.; Coleman, K. S.; Green, M. L. H. Dalton Trans. 2011, 40, 661.

    51. [51]

      Liu, G.; Hou, M.-Q.; Wu, T.-B.; Jiang, T.; Fan, H.-L.; Yang, G.-Y.; Han, B.-X. Phys. Chem. Chem. Phys. 2011, 13, 2062.

    52. [52]

      Li, G.; Yang, H.-Q.; Li, W.; Zhang, G.-L. Green Chem. 2011, 13, 2939.

    53. [53]

      Lázaro, G.; Fernández-Alvarez, F. J.; Iglesias, M.; Horna, C.; Vispe, E.; Sancho, R.; Lahoz, F. J.; Iglesias, M.; Pérez-Torrente, J. J.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 62. 

    54. [54]

      Fernández, M.; Ferré, M.; Pla-Quintana, A.; Parella, T.; Pleixats, R.; Roglans, A. Eur. J. Org. Chem. 2014, 6242.

    55. [55]

      Rostamnia, S.; Hossieni, H. G.; Doustkhah, E. J. Organomet. Chem. 2015, 791, 18. 

    56. [56]

      Tyrrell, E.; Whiteman, L.; Williams, N. J. Organomet. Chem. 2011, 696, 3465. 

    57. [57]

      Borja, G.; Monge-Marcet, A.; Pleixats, R.; Parella, T.; Cattoën, X.; Michel Man, M. W. C. Eur. J. Org. Chem. 2012, 3625.

    58. [58]

      Tamami, B.; Farjadian, F.; Ghasemi, S.; Allahyari, H. New J. Chem. 2013, 37, 2011.

    59. [59]

      Ghiaci, M.; Zarghani, M.; Khojastehnezhad, A.; Moeinpour, F. RSC Adv. 2014, 4, 15496.

    60. [60]

      Conley, M. P.; Copéret, C.; Thieuleux, C. ACS Catal. 2014, 4, 1458.

    61. [61]

      Martínez, A.; Krinsky, J. L.; Peñafiel, I.; Castillón, S.; Loponov, K.; Lapkin, A.; Godard, C.; Claver, C. Catal. Sci. Technol. 2015, 5, 310.

    62. [62]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. New. J. Chem. 2015, 39, 9729.

    63. [63]

      Romanenko, I.; Gajan, D.; Sayah, R.; Crozet, D.; Jeanneau, E.; Lucas, C.; Leroux, L.; Veyre, L.; Lesage, A.; Emsley, L.; Lacôte, E.; Thieuleux, C. Angew. Chem., Int. Ed. 2015, 54, 1. 

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    6. [6]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    7. [7]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    8. [8]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    11. [11]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Wenjun ZhuChenbin AiKaiqiang XuYatai ZhouXidong ZhangYong Zhang . WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production. Acta Physico-Chimica Sinica, 2026, 42(3): 100184-0. doi: 10.1016/j.actphy.2025.100184

    19. [19]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(1530)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return