Citation: He Xinwei, Hu Xiaoqian, Tao Jiajia, Han Guang, Shang Yongjia. Progress in Iron Complexes-Catalyzed Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1465-1483. doi: 10.6023/cjoc201601007 shu

Progress in Iron Complexes-Catalyzed Organic Reactions

  • Corresponding author: He Xinwei, xinweihe@mail.ahnu.edu.cn Shang Yongjia, shyj@mail.ahnu.edu.cn
  • Received Date: 8 January 2016
    Revised Date: 3 March 2016

    Fund Project: the Natural Science Foundation of Anhui Province No. 1308085QB39the National Natural Science Foundation of China Nos. 21172001, 21372008the Doctoral Scientific Research Foundation of Anhui Normal University No. 2016XJJ110

Figures(22)

  • In recent years, metal and their complexes-catalyzed organic reactions have received much attention in organic chemistry due to their rapidity and efficiency. Iron complexes have attracted much attention from chemical society due to the advantages of high catalytic activity and selectivity. The advances of iron complexes-catalyzed organic reactions are reviewed, such as polymerisation reactions, hydrosilylation/hydroboration, cycloaddition, redox reactions, cross-coupling reactions and 1,4-additions, and the prospects of its development are forecasted.
  • 加载中
    1. [1]

      Reppe, W. Experientia 1949, 5, 93.

    2. [2]

      Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039.

    3. [3]

      Hieber, V. W.; Braun, G. Z. Naturforsch. 1959, 146, 132.

    4. [4]

      Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.

    5. [5]

      Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Ethève, M. Chem. Soc. Rev. 2005, 34, 573. (b) Correa, A.; García Mancheño, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (d) Gopalaiah, K. Chem. Rev. 2013, 113, 3248. 

    6. [6]

      Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications, Wiley-VCH, Weinheim, Germany, 2008. (b) Plietker, B. Topics in Organometallic Chemsitry, Iron Catalysis: Fundamentals and Applications, Springer-VBH, Berlin, 2011, Vol. 33.

    7. [7]

      Gan, K.; Sadeer, A.; Xu, C.; Li, Y.; Pullarkat, S. A. Organometallics 2014, 33, 5074. 

    8. [8]

      Champouret, Y. D. M.; Fawcett, J.; Nodes, W. J.; Singh, K.; Solan, G. A. Inorg. Chem. 2006, 45, 9890. (b) Sun, W.-H.; Hao, P.; Zhang, S.; Shi, Q.; Zuo, W.; Tang, X.; Lu, X. Organometallics 2007, 26, 2720. 

    9. [9]

      Ma, J.; Feng, C.; Wang, S.; Zhao, K.-Q.; Sun, W.-H.; Redshaw, C.; Solan, G. A. Inorg. Chem. Front. 2014, 1, 14. (b) Searles, K.; Fortier, S.; Khusniyarov, M. M.; Carroll, P. J.; Sutter, J.; Meyer, K.; Mindiola, D. J.; Caulton, K. G. Angew. Chem., Int. Ed. 2014, 53, 14139. (c) Lin, Y.-F.; Ichihara, N.; Nakajima, Y.; Ozawa, F. Organometallics 2014, 33, 6700. (d) Suzuki, T.; Matsumoto, J.; Kajita, Y.; Inomata, T.; Ozawaa, T.; Masuda, H. Dalton Trans. 2015, 44, 1017. 

    10. [10]

      Zuo, W.; Tauer, S.; Prokopchuk, D. E.; Morris, R. H. Organometallics 2014, 33, 5791. (b) Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. J. Am. Chem. Soc. 2013, 135, 14871. 

    11. [11]

      Zhang, Q.; Xiang, L.; Deng, L. Organometallics 2012, 31, 4537. (b) Gallego, D.; Inoue, S.; Blom, B.; Driess, M. Organometallics 2014, 33, 6885. (c) Bhattacharya, P.; Krause, J. A.; Guan, H. Organometallics 2014, 33, 6113.

    12. [12]

      Karpiniec, S. S.; McGuinness, D. S.; Britovsek, G. J. P.; Wierengaa, T. S.; Patel, J. Chem. Commun. 2011, 47, 6945.

    13. [13]

      Xing, Q.; Zhao, T.; Qiao, Y.; Wang, L.; Redshaw, C.; Sun, W.-H. RSC Adv. 2013, 3, 26184.

    14. [14]

      Huang, F.; Xing, Q.; Liang, T.; Flisak, Z.; Ye, B.; Hu, X.; Yang, W.; Sun, W.-H. Dalton Trans. 2014, 43, 16818.

    15. [15]

      Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.

    16. [16]

      Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661. 

    17. [17]

      Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282. 

    18. [18]

      Bhattacharya, P.; Krause, J. A.; Guan, H. Organometallics 2014, 33, 6113. 

    19. [19]

      Zuo, Z.; Zhang, L.; Leng, X.; Huang, Z. Chem. Commun. 2015, 51, 5073.

    20. [20]

      Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2015, 137, 2456. 

    21. [21]

      Ito, J.; Hosokawa, S.; Khalid, H. B.; Nishiyama, H. Organometallics 2015, 34, 1377. 

    22. [22]

      Zuo, Z.; Sun, H.; Wang, L.; Li, X. Dalton Trans. 2014, 43, 11716.

    23. [23]

      Wu, S.; Li, X.; Xiong, Z.; Xu, W.; Lu, Y.; Sun, H. Organometallics 2013, 32, 3227. (b) Zhao, H.; Sun, H.; Li, X. Organometallics 2014, 33, 3535.

    24. [24]

      Huang, S.; Zhao, H.; Li, X.; Wang, L.; Sun, H. RSC Adv. 2015, 5, 15660.

    25. [25]

      Wang, L.; Sun, H.; Li, X. Eur. J. Inorg. Chem. 2015, 2732.

    26. [26]

      Xue, B.; Sun, H.; Li, X. RSC Adv. 2015, 5, 52000.

    27. [27]

      Zhang, C.; Yu, S.-B.; Hu, X.-P.; Wang, D.-Y.; Zheng, Z. Org. Lett. 2010, 12, 5542.

    28. [28]

      Check, C. T.; Jang, K. P.; Schwamb, C. B.; Wong, A. S.; Wang, M. H.; Scheidt, K. A. Angew. Chem., Int. Ed. 2015, 54, 4264. 

    29. [29]

      Zhang, C.; Hu, X.-H.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. J. Am. Chem. Soc. 2012, 134, 9585.

    30. [30]

      Casitas, A.; Krause, H.; Goddard, R.; Fürstner, A. Angew. Chem., Int. Ed. 2015, 54, 1521. 

    31. [31]

      Cussó, O.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Angew. Chem., Int. Ed. 2015, 54, 2729. 

    32. [32]

      Chatterjee, S.; Paine, T. K. Inorg. Chem. 2015, 54, 1720. 

    33. [33]

      Li, Y.; Yu, S.; Wu, X.; Xiao, J.; Shen, W.; Dong, Z.; Gao, J. J. Am. Chem. Soc. 2014, 136, 4031. (b) Li, Y.; Yu, S.; Shen, W.; Gao. J. Acc. Chem. Res. 2015, 48, 2587. (c) Yoshimura, M.; Tanaka, S.; Kitamura, M. Tetrahedron Lett. 2014, 55, 3635. (d) Foubelo, F.; Nájera, C.; Yus, M. Tetrahedron: Asymmetry 2015, 26, 769. 

    34. [34]

      Mikhailine, A. A.; Morris, R. H. Inorg. Chem. 2010, 49, 11039. (b) Lagaditis, P. O.; Lough, A. J.; Morris, R. H. Inorg. Chem. 2010, 49, 10057. (c) Meyer, N.; Lough, A. J.; Morris, R. H. Chem. Eur. J. 2009, 15, 5605. (d) Mikhailine, A.; Lough, A. J.; Morris, R. J. Am. Chem. Soc. 2009, 131, 1394. (e) Sui-Seng, C.; Freutel, F.; Lough, A. J.; Morris, R. Angew. Chem., Int. Ed. 2008, 47, 940. 

    35. [35]

      Sues, P. E.; Lough, A. J.; Morris, R. H. Organometallics 2011, 30, 4418. 

    36. [36]

      Mikhailine, A. A.; Maishan, M. I.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2012, 134, 12266. 

    37. [37]

      Prokopchuk, D. E.; Sonnenberg, J. F.; Meyer, N.; Iuliis, M. Z.-D.; Lough, A. J.; Morris, R. H. Organometallics 2012, 31, 3056. 

    38. [38]

      Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H. Science 2013, 342, 1080. 

    39. [39]

      Prokopchuk, D. E.; Morris, R. H. Organometallics 2012, 31, 7375. 

    40. [40]

      Zuo, W.; Tauer, S.; Prokopchuk, D. E.; Morris, R. H. Organometallics 2014, 33, 5791. 

    41. [41]

      Sonnenberg, J. F.; Lough, A. J.; Morris, R. H. Organometallics 2014, 33, 6452. 

    42. [42]

      Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136, 1367. 

    43. [43]

      Zuo, W.; Morris, R. H. Nat. Protoc. 2015, 10, 241. 

    44. [44]

      Smith, S. A. M.; Morris, R. H. Sythesis 2015, 47, 1775.

    45. [45]

      Bigler, R.; Mezzetti, A. Org. Lett. 2014, 16, 6460.

    46. [46]

      Mikhailine, A. A.; Maishan, M. I.; Morris, R. H. Org. Lett. 2012, 14, 4638. 

    47. [47]

      Mazza, S.; Scopelliti, R.; Hu, X. Organometallics 2015, 34, 1538.

    48. [48]

      Kuwano, R.; Hashiguchi, Y.; Ikeda, R.; Ishizuka, K. Angew. Chem., Int. Ed. 2015, 54, 2393. 

    49. [49]

      Gan, K.; Sadeer, A.; Xu, C.; Li, Y.; Pullarkat, S. A. Organometallics 2014, 33, 5074. 

    50. [50]

      Hellmuth, T.; Frey, W.; Peters, R. Angew. Chem., Int. Ed. 2015, 54, 2788. 

    51. [51]

      Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279. 

    52. [52]

      Green, R. A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2015, 54, 3768. 

    53. [53]

      Borzenko, A.; Rotta-Loria, N. L.; MacQueen, P. M.; Lavoie, C. M.; McDonald, R.; Stradiotto, M. Angew. Chem., Int. Ed. 2015, 54, 3773. 

    54. [54]

      Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587. (d) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. 

    55. [55]

      Shang, Y.-J.; Wu, J.-W.; Fan, C.-L.; Hu, J.-S.; Lu, B.-Y. J. Organomet. Chem. 2008, 693, 2963.

    56. [56]

      Feng, Z.-J.; Yu, S.-Y.; Shang, Y.-J. Appl. Organomet. Chem. 2008, 22, 577.

    57. [57]

      Yu, S.-Y.; Zhang, Z.-Q.; Yu, Z.-Y.; Shang, Y.-J. Appl. Organomet. Chem. 2014, 28, 657.

    58. [58]

      Mo, Z.; Zhang, Q.; Deng, L. Organometallics 2012, 31, 6518.

    59. [59]

      Bauer, G.; Wodrich, M. D.; Scopelliti, R.; Hu, X. Organometallics 2015, 34, 289.

    60. [60]

      Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.; Rong, G.; Mao, J. Green Chem. 2013, 15, 976.

    61. [61]

      Zheng, J.; Darcel, C.; Sortais, J.-B. Chem. Commun. 2014, 50, 14229.

  • 加载中
    1. [1]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    8. [8]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    9. [9]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    10. [10]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    12. [12]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    15. [15]

      Shuyong Zhang Yanguang Wang Yi Yang Hualong Xu Yuqiang Ding Wenqing Zhang Gang Ni Qiue Cao Jianping Li Chunyan Sun Xijiang Han . The Leading Role of University Chemistry in the Reform and Development of the Applied Chemistry Major. University Chemistry, 2025, 40(12): 41-48. doi: 10.12461/PKU.DXHX202508013

    16. [16]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(9228)
  • HTML views(3597)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return