Citation: Meng Tuanjie, Feng Cuilan, Liu Lantao, Wang Tao, Xu Kai, Zhao Wenxian. Palladium Catalyzed Oxidation of Ynamides Using Dimethyl Sulfoxide as Oxidant: A Facile Way to Synthesize α-Ketoamide Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1382-1388. doi: 10.6023/cjoc201601003 shu

Palladium Catalyzed Oxidation of Ynamides Using Dimethyl Sulfoxide as Oxidant: A Facile Way to Synthesize α-Ketoamide Derivatives

  • Corresponding author: Liu Lantao, liult05@iccas.ac.cn Zhao Wenxian, zhwx2595126@163.com
  • Received Date: 3 January 2016
    Revised Date: 4 February 2016

    Fund Project: the Science and Technology Key Project of Henan Province No. 142102210635and the Program for University Key Young Teachers of Henan Province No. 2015GGJS-126Project supported by the National Natural Science Foundation of China Nos. U1204204, 21172139, 21202095

Figures(2)

  • A series of α-ketoamide derivatives were obtained from the palladium catalyzed oxidation of ynamides using cheap and readily available dimethyl sulfoxide as oxidant and solvent under room temperature. The structures of all products were characterized by 1H NMR, 13C NMR, IR and HRMS. This protocol has some distinct advantages of mild conditions, simple work-up, readily available starting materials and fast reaction rate.
  • 加载中
    1. [1]

      Kher, S. S.; Penzo, M.; Fulle, S.; Finn, P. W.; Blackman, M. J.; Jirgensons, A. Bioorg. Med. Chem. Lett. 2014, 24, 4486.

    2. [2]

      Korukonda, R.; Guan, N.; Dalton, J. T.; Liu, J.; Donkor, I. O. J. Med. Chem. 2006, 49, 5282. (b) Donkor, I. O.; Han, J.; Zheng, X. J. Med. Chem. 2004, 47, 72. (c) Yoo, Y. J.; Nam, D. H.; Jung, S. Y.; Jang, J. W.; Kim, H. J.; Jin, C.; Pae, A. N.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2011, 21, 2850. (d) Ovat, A.; Li, Z. Z.; Hampton, C. Y.; Asress, S. A.; Fernández, F. M.; Glass, J. D.; Powers, J. C. J. Med. Chem. 2010, 53, 6326. 

    3. [3]

      Mandadapu, S. R.; Weerawarna, P. M.; Gunnam, M. R.; Alliston, K. R.; Lushington, G. H.; Kim, Y.; Chang, K.-O.; Groutas, W. C. Bioorg. Med. Chem. Lett. 2012, 22, 4820. 

    4. [4]

      Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K. H.; Bartenschlager, R.; Klein, C. D. Bioorg. Med. Chem. 2011, 19, 4067. 

    5. [5]

      Chen, J.-C.; Uang, B.-J.; Lyu, P.-C.; Chang, J.-Y.; Liu, K.-J.; Kuo, C.-C.; Hsieh, H.-P.; Wang, H.-C.; Cheng, C.-S.; Chang, Y.-H.; Chang, M. D.-T.; Chang, W.-S. W.; Lin, C.-C. J. Med. Chem. 2010, 53, 4545.

    6. [6]

      Chiou, A.; Markidis, T.; Constantinou-Kokotou, V.; Verger, R.; KoKotos, G. Org. Lett. 2000, 2, 347.

    7. [7]

      Bennett, F.; Huang, Y.; Hendrata, S.; Lovey, R.; Bogen, S. L.; Pan, W.; Guo, Z.; Prongay, A.; Chen, K. X.; Arasappan, A.; Venkatraman, S.; Velazquez, F.; Nair, L.; Sannigrahi, M.; Tong, X.; Pichardo, J.; Cheng, K.-C.; Girijavallabhan, V. M.; Saksena, A. K.; Njoroge, F. G. Bioorg. Med. Chem. Lett. 2010, 20, 2617. 

    8. [8]

      Lin, C.; Kwong, A. D.; Perni, R. B. Infect. Disord.: Drug Targets 2006, 6, 3.

    9. [9]

      Schnopp, C.; Remling, R.; Möhrenschlager, M.; Weigl, L.; Ring, J.; Abeck, D. J. Am. Acad. Dermtol. 2002, 46, 73. 

    10. [10]

      Stella, S.; Chadha, A. Catal. Today 2012, 198, 345. (b) Singh, R. P.; Shreeve, J. M. J. Org. Chem. 2003, 68, 6063. (c) Guin, S.; Rout, S. K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 2559. (d) Zhang, X.; Yang, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 3649. (e) Wang, H.; Guo, L.-N.; Duan, X.-H. Org. Biomol. Chem. 2013, 11, 4573. 

    11. [11]

    12. [12]

       

    13. [13]

      Dutta, S.; Kotha, S. S.; Sekar, G. RSC Adv. 2015, 5, 47265. 

    14. [14]

      Du, B.; Jin, B.; Sun, P. Org. Biomol. Chem. 2014, 12, 4586. 

    15. [15]

      Zhang, C.; Zong, X.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 3280. (b) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152.

    16. [16]

      Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2011, 50, 11088. 

    17. [17]

    18. [18]

      Xing, Q.; Shi, L.; Lang, R.; Xia, C.; Li, F. Chem. Commun. 2012, 48, 11023.

    19. [19]

      Al-Rashid, Z. F.; Johnson, W. L.; Hsung, R. P.; Wei, Y.; Yao, P.-Y.; Liu, R.; Zhao, K. J. Org. Chem. 2008, 73, 8780. 

    20. [20]

      Huang, H.; He, G.; Zhu, X.; Jin, X.; Qiu, S.; Zhu, H. Eur. J. Org. Chem. 2014, 7174.

    21. [21]

      Chikugo, T.; Yauchi, Y.; Ide, M.; Iwasawa, T. Tetrahedron 2014, 70, 3988.

    22. [22]

      Xu, C.-F.; Xu, M.; Jia, Y.-X.; Li, C.-Y. Org. Lett. 2011, 13, 1556. (b) Wang, K.-B.; Ran, R.-Q.; Xiu, S.-D.; Li, C.-Y. Org. Lett. 2013, 15, 2374.

    23. [23]

      Zuo, J.-F.; Huang, W.-S.; Li, L.; Xu, Z.; Zheng, Z.-J.; Yang, K.-F.; Xu, L.-W. RSC Adv. 2015, 5, 30389. (b) Liu, F.-L.; Chen, J.-R.; Zuo, Y.-Q.; Wei, Q.; Xiao, W.-J. Org. Lett. 2014, 16, 3768. (c) Le, H. V.; Ganem, B. Org. Lett. 2011, 13, 2584. (d) Vieira, A. A.; Azeredo, J. B.; Godoi, M.; Santi, C.; Júnior, E. N. S.; Braga, A. L. J. Org. Chem. 2015, 80, 2120. (e) Prasad, P. K.; Reddi, R. N.; Sudalai, A. Org. Lett. 2016, 18, 500.

    24. [24]

      Gao, A.; Yang, F.; Li, J.; Wu, Y. Tetrahedron 2012, 68, 4950.

    25. [25]

      Dekorver, K. A.; Hsung, R. P.; Song, W.-Z.; Wang, X.-N.; Walton, M. C. Org. Lett. 2012, 14, 3214. (b) Wang, X.-N.; Winston-Mcpherson, G. N.; Walton, M. C.; Zhang, Y.; Hsung, R. P.; Dekorver, K. A. J. Org. Chem. 2013, 78, 6233. (c) Dekorver, K. A.; Johnson, W. L.; Zhang, Y.; Hsung, R. P.; Dai, H.; Deng, J.; Lohse, A. G.; Zhang, Y.-S. J. Org. Chem. 2011, 76, 5092. 

    26. [26]

      Huang, H.; He, G.; Zhu, G.; Zhu, X.; Qiu, S.; Zhu, H. J. Org. Chem. 2015, 80, 3480. (b) Istrate, F. M.; Buzas, A. K.; Jurberg, I. D.; Odabachian, Y.; Gagosz, F. Org. Lett. 2008, 10, 925. (c) Lu, Z.; Cui, W.; Xia, S.; Bai, Y.; Luo, F.; Zhu, G. J. Org. Chem. 2012, 77, 9871. (d) Lu, Z.; Xu, X.; Yang, Z.; Kong, L.; Zhu, G. Tetrahedron Lett. 2012, 53, 3433. (e) Hashmi, A. S. K.; Salathé, R.; Frey, W. Synlett 2007, 1763. 

    27. [27]

       

  • 加载中
    1. [1]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    2. [2]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    14. [14]

      Fen Wang Qi Yang Qianfei Ye Jichao Xiao . Synthesis of Sulfinamidines via the Oxidative Sulfonamination of Sulfenamides: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 354-361. doi: 10.12461/PKU.DXHX202506059

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    18. [18]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041

    19. [19]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(1260)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return