Citation: Ge Xin, Chen Xinzhi, Qian Chao. Progress on the Lewis-Basic Organocatalytic Asymmetric Reduction of Imines[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1208-1217. doi: 10.6023/cjoc201512029 shu

Progress on the Lewis-Basic Organocatalytic Asymmetric Reduction of Imines

  • Corresponding author: Qian Chao, qianchao@zju.edu.cn
  • Received Date: 21 December 2015
    Revised Date: 26 January 2016

    Fund Project: Zhejiang Provincial Public Technology Research of China Nos.2014C31123,2015C31038and the Fundamental Research Funds for the Central Universities No.JUSRP115A05Project supported by the Natural Science Foundation of China Nos.21376213,21476194

Figures(9)

  • Recently, the asymmetric reduction of imines catalyzed by Lewis-basic organocatalyst has been received much attention as the cheap hydrogen source and the simple post treatment. Based on the different functional groups of organocatalysts, this paper introduced formamide, pyridine amide, sulfonamide, supported and other Lewis basic organocatalysts. The structural characteristics, catalytic activity and mechanism of the Lewis-basic organocatalysts were summarized.
  • 加载中
    1. [1]

    2. [2]

      Blaser, H. U. Chem Commun. 2003, 293.

    3. [3]

      Langlois, N.; Dang, T.; Kagan, H. B. Tetrahedron Lett. 1973, 4865.

    4. [4]

      Bakos, J.; Orosz, A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. J. Chem.Soc.-Chem. Commun. 1991, 1684.

    5. [5]

       

    6. [6]

      Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1992, 114, 7562. 

    7. [7]

      Schnider, P.; Koch, G.; Pretot, R.; Wang, G. Z.; Bohnen, F. M.; Kruger, C.; Pfaltz, A. Chem-Eur J. 1997, 3, 887. 

    8. [8]

      Xiao, D. M.; Zhang, X. M. Angew. Chem., Int. Ed. 2001, 40, 3425. 

    9. [9]

      Wang, C.; Villa-Marcos, B.; Xiao, J. L. Chem. Commun. 2011, 47, 9773. 

    10. [10]

      Blaser, H. U.; Buser, H. P.; Coers, K.; Hanreich, R.; Jalett, H. P.; Jelsch, E.; Pugin, B.; Schneider, H. D.; Spindler, F.; Wegmann, A. Chimia 1999, 53, 275.

    11. [11]

      Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. 

    12. [12]

      List, B. J. Am. Chem. Soc. 2000, 122, 9336. 

    13. [13]

      List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395. 

    14. [14]

      List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573.

    15. [15]

      Mitsumori, S.; Zhang, H.; Cheong, P. H. Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 1040. 

    16. [16]

      List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423. 

    17. [17]

      Iwasaki, F.; Onomura, O.; Mishima, K.; Kanematsu, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42, 2525.

    18. [18]

      Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int Ed. 2005, 44, 7424. 

    19. [19]

      Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 6751. 

    20. [20]

      Rueping, M.; Antonchick, A. R.; Theissmann, T. Angew Chem., Int. Ed. 2006, 45, 3683. 

    21. [21]

      Rueping, M.; Theissmann, T.; Antonchick, A. P. Synlett 2006, 1071.

    22. [22]

      Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett. 2004, 6, 2253.

    23. [23]

      Wang, Z. Y.; Wei, S. Y.; Wang, C.; Sun, J. Tetrahedron: Asymmetry 2007, 18, 705. 

    24. [24]

      Wang, Z. Y.; Wang, C.; Zhou, L.; Sun, J. Org. Biomol. Chem. 2013, 11, 787. 

    25. [25]

      Wang, Z. Y.; Cheng, M.; Wu, P. C.; Wei, S. Y.; Sun, J. Org. Lett. 2006, 8, 3045.

    26. [26]

      Wang, Z. Y.; Ye, X. X.; Wei, S. Y.; Wu, P. C.; Zhang, A. J.; Sun, J. Org. Lett. 2006, 8, 999.

    27. [27]

      Zhou, L.; Wang, Z. Y.; Wei, S. Y.; Sun, J. Chem. Commun. 2007, 2977.

    28. [28]

      Zhang, Z. G.; Rooshenas, P.; Hausmann, H.; Schreiner, P. R. Synthesis-Stuttgart 2009, 1531.

    29. [29]

      Kanemitsu, T.; Umehara, A.; Haneji, R.; Nagata, K.; Itoh, T. Tetrahedron 2012, 68, 3893.

    30. [30]

      Malkov, A. V.; Stoncius, S.; MacDougall, K. N.; Mariani, A.; McGeoch, G. D.; Kocovsky, P. Tetrahedron 2006, 62, 264. 

    31. [31]

      Malkov, A. V.; Vrankova, K.; Sigerson, R. C.; Stoncius, S.; Kocovsky, P. Tetrahedron 2009, 65, 9481. 

    32. [32]

      Malkov, A. V.; Vrankova, K.; Stoncius, S.; Kocovsky, P. J. Org. Chem. 2009, 74, 5839. 

    33. [33]

      Malkov, A. V.; Stoncius, S.; Kocovsky, P. Angew. Chem., Int Ed. 2007, 46, 3722. 

    34. [34]

      Malkov, A. V.; Stoncius, S.; Vrankova, K.; Arndt, M.; Kocovsky, P. Chem. Eur. J. 2008, 14, 8082. 

    35. [35]

      Xiao, Y.-C.; Wang, C.; Yao, Y.; Sun, J.; Chen, Y.-C. Angew. Chem., Int. Ed. 2011, 50, 10661.

    36. [36]

      Onomura, O.; Kouchi, Y.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 3751.

    37. [37]

      Zheng, H.-J.; Chen, W.-B.; Wu, Z.-J.; Deng, J.-G.; Lin, W.-Q.; Yuan, W.-C.; Zhang, X.-M. Chem-Eur J. 2008, 14, 9864.

    38. [38]

      Xue, Z.-Y.; Jiang, Y.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2010, 616.

    39. [39]

      Chen, X.; Zheng, Y.; Shu, C.; Yuan, W.; Liu, B.; Zhang, X. J. Org. Chem. 2011, 76, 9109. 

    40. [40]

      Gautier, F. M.; Jones, S.; Martin, S. J. Org. Biomol. Chem. 2009, 7, 229. 

    41. [41]

      Jones, S.; Li, X. F. Tetrahedron 2012, 68, 5522. 

    42. [42]

      Zheng, H.; Deng, J.; Lin, W.; Zhang, X. Tetrahedron Lett. 2007, 48, 7934.

    43. [43]

      Xue, Z.-Y.; Jiang, Y.; Peng, X.-Z.; Yuan, W.-C.; Zhang, X.-M. Adv. Synth. Catal. 2010, 352, 2132.

    44. [44]

      Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304. 

    45. [45]

      Guizzetti, S.; Benaglia, M.; Bonsignore, M.; Raimondi, L. Org. Biomol. Chem. 2011, 9, 739. 

    46. [46]

      Pei, D.; Wang, Z.; Wei, S.; Zhang, Y.; Sun, J. Org. Lett. 2006, 8, 5913.

    47. [47]

      Pei, D.; Zhang, Y.; Wei, S. Y.; Wang, M.; Sun, J. Adv. Synth. Catal. 2008, 350, 619. 

    48. [48]

      Wang, C.; Wu, X.; Zhou, L.; Sun, J. Chem. Eur. J. 2008, 14, 8789. 

    49. [49]

      Wu, X. J.; Li, Y.; Wang, C.; Zhou, L.; Lu, X. X.; Sun, J. A. Chem. Eur. J. 2011, 17, 2846. 

    50. [50]

      Malkov, A. V.; Liddon, A.; Ramirez-Lopez, P.; Bendova, L.; Haigh, D.; Kocovsky, P. Angew Chem., Int. Edit .2006, 45, 1432. 

    51. [51]

       

    52. [52]

      Ge, X.; Qian, C.; Chen, Y. B.; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 596. 

    53. [53]

      Malkov, A. V.; Figlus, M.; Stoncius, S.; Kocovsky, P. J. Org. Chem. 2007, 72, 1315. 

    54. [54]

      Malkov, A. V.; Figlus, M.; Kocovsky, P. J. Org. Chem. 2008, 73, 3985. 

    55. [55]

      Malkov, A. V.; Figlus, M.; Cooke, G.; Caldwell, S. T.; Rabani, G.; Prestly, M. R.; Kocovsky, P. Org. Biomol. Chem. 2009, 7, 1878. 

    56. [56]

      Malkov, A. V.; Figlus, M.; Prestly, M. R.; Rabani, G.; Cooke, G.; Kocovsky, P. Chem. Eur. J. 2009, 15, 9651. 

    57. [57]

      Ge, X.; Qian, C.; Chen, X. Z. Tetrahedron: Asymmetry 2014, 25, 1450. 

    58. [58]

    59. [59]

      Ge, X.; Qian, C.; Ye, X. M.; Chen, X. Z. RSC Adv. 2015, 5, 65402. 

  • 加载中
    1. [1]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Mengxiu LiJiahui MaoJiangfeng NiLiang Li . Three birds with one stone: modification of Li5FeO4 with thermal induction of Lewis acid. Acta Physico-Chimica Sinica, 2026, 42(4): 100189-0. doi: 10.1016/j.actphy.2025.100189

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    12. [12]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Guoqiang PengXiuyan LiMin LiZhibo SuFalu HuGuowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Wenjun ZhuChenbin AiKaiqiang XuYatai ZhouXidong ZhangYong Zhang . WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production. Acta Physico-Chimica Sinica, 2026, 42(3): 100184-0. doi: 10.1016/j.actphy.2025.100184

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(0)
  • Abstract views(2289)
  • HTML views(495)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return