Citation: Fu Ying, Zhao Xingling, Hou Bo. Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1184-1196. doi: 10.6023/cjoc201512017 shu

Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides

  • Corresponding author: Fu Ying, fu_yingmail@126.com
  • Received Date: 11 December 2015
    Revised Date: 11 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos.21262030,20962017

Figures(8)

  • Being an active class of electrophiles, the desulfitative cross-couplings of sulfonyl chlorides has emerged as a hot issue nowadays. Under suitable temperature and transitional metal catalysis, sulfonyl chlorides efficiently cross-coupled with a wide range of nucleophiles which were potential in several important organic synthesis. The transitional metal catalyzed desulfitative coupling reactions of sulfonyl chlorides are briefly reviewed and are compared with their corresponding sulfonylation reaction in order to find the key factors that determine desulfonation and further providing reliable proposal for future researches.
  • 加载中
    1. [1]

       

    2. [2]

      Herbrandson, H. F.; Kelly, W. S.; Versnel, V. J. Am. Chem. Soc. 1958, 80, 3301. 

    3. [3]

      Truce, W. E.; Vriesen, C. W. J. Am. Chem. Soc. 1953, 75, 5032. 

    4. [4]

      Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674. 

    5. [5]

    6. [6]

      Oestreich, M. The Mizoroki-Heck Reaction, John Wiley & Sons, Ltd., Münster, Germany, 2009.

    7. [7]

      Kasahara, A.; Izumi, T.; Kudou, N.; Azami, H.; Yamamato, S. Chem. Ind. 1988, 51. (b) Kasahara, A.; Izumi, T.; Miyamoto, K.; Sakai, T. Chem. Ind. 1989, 192.

    8. [8]

      Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Tetrahedron Lett. 1989, 30, 975. (b) Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1990, 2207.

    9. [9]

      Dubbaka, S. R.; Vogel, P. Chem. Eur. J. 2005, 11, 2633. 

    10. [10]

      Dubbaka, S. R.; Zhao, D.; Fei, Z.; Rao Volla, C. M.; Dyson, P. J.; Vogel, P. Synlett 2006, 3155.

    11. [11]

      Yuan, K.; Sang, R.; Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2015, 5, 2904.

    12. [12]

      Jafarpour, F.; Olia, M. B. A.; Hazrati, H. Adv. Synth. Catal. 2013, 355, 3407. 

    13. [13]

      Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D. Eur. J. Org. Chem. 2015, 459.

    14. [14]

      Kamigata, N.; Ozaki, J.; Kobayashi, M. Chem. Lett. 1985, 705. (b) Kamigata, N.; Ozaki, J.; Kobayashi, M. J. Org. Chem. 1985, 50, 5045. (c) Kameyama, M.; Shimezawa, H.; Satoh, T.; Kamigata, N. Bull. Chem. Soc. Jpn. 1988, 61, 1231.

    15. [15]

      Barata-Vallejo, S.; Postigo, A. Coord. Chem. Rev. 2013, 257, 3051. (b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598. (c) Barata-Vallejo, S.; Torviso, M. R.; Lantaño, B.; Bonesi, S. M.; Postigo, A. J. Fluorine Chem. 2014, 161, 134.

    16. [16]

      Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Sawada, H. J. Chem. Soc., Perkin Trans. 1 1991, 627.

    17. [17]

      Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962. (b) Orochov, A.; Asscher, M.; Vofsi, D. J. Chem. Soc. B 1969, 255.

    18. [18]

      Liu, L. K.; Chi, Y.; Jen, K.-Y. J. Org. Chem. 1980, 45, 406.

    19. [19]

      Xu, Y.-H.; Wang, M.; Lu, P.; Loh, T.-P. Tetrahedron 2013, 69, 4403.

    20. [20]

      Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. 

    21. [21]

      Labadie, S. S. J. Org. Chem. 1989, 54, 2496. 

    22. [22]

      Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292. 

    23. [23]

      Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1235.

    24. [24]

      Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.

    25. [25]

      Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. 

    26. [26]

      Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387. 

    27. [27]

      Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (b) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69. (c) Herrmann, W A.; Reisiner, C. P.; Spieger, M. J. Organomet. Chem. 1998, 557, 93. (d) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804. 

    28. [28]

      Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6, 2105.

    29. [29]

      Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060. (b) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. 

    30. [30]

      Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.

    31. [31]

      Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. 

    32. [32]

      Özdemir, I.; Gürbüz, N.; Seçkin, T.; Çetinkaya, B. Appl. Organomet. Chem. 2005, 19, 633. (b) Yan, C.; Zeng, X.; Zhang, W.; Luo, M. J. Organomet. Chem. 2006, 691, 3391. 

    33. [33]

      Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773. 

    34. [34]

      Zhao, Y.; Zhou, Y.; Ma, D.; Liu, J.; Zhang, T. Y.; Zhang, H. Org. Biomol. Chem. 2003, 1, 1643. (b) Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 1837. (c) Kim, J. H.; Jun, B. H.; Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 5827. (d) Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977. (e) Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305. 

    35. [35]

      Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305.

    36. [36]

      Zhang, S.; Zeng, X.; Wei, Z.; Zhao, D.; Kang, T.; Zhang, W.; Yan, M.; Luo, M. Synlett 2006, 1891.

    37. [37]

      Tamao, K.; Sumitani, K.; Kumuda, M. J. Am. Chem. Soc. 1972, 94, 4374. 

    38. [38]

      Gilman, H.; Fothergill, R. E. J. Am. Chem. Soc. 1929, 51, 3501. 

    39. [39]

      Sun, P.; Wang, L.; Zhang, Y. Tetrahedron Lett. 1997, 31, 5549.

    40. [40]

      Dubbaka, S. R.; Vogel, P. Tetrahedron Lett. 2006, 47, 3345. 

    41. [41]

      Fu, Y.; Zhu, W.; Zhao, X.; Hügel, H.; Wu, Z.; Su, Y.; Du, Z.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2014, 12, 4295. 

    42. [42]

      Rao Volla, C. M.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305. 

    43. [43]

      Volla, C. M. R.; Marković, D.; Dubbaka, S. R.; Vogel, P. Eur. J. Org. Chem. 2009, 6281.

    44. [44]

      Rao Volla, C. M.; Dubbaka, S. R.; Vogel, P. Tetrahedron 2009, 65, 504. 

    45. [45]

      Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954. (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874. 

    46. [46]

      Dubbaka, S. R.; Vogel, P. Adv. Synth. Catal. 2004, 346, 1793. 

    47. [47]

      Zeng, X.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.

    48. [48]

      Wang, L.; Zhu, H.; Che, J.; Yang, Y.; Zhu, G. Tetrahedron Lett. 2014, 55, 1011.

    49. [49]

    50. [50]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S. Synlett 2003, 1722.

    51. [51]

      Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 4107. 

    52. [52]

      Denmark, S. E.; Tymonko, S. A. J. Org. Chem. 2003, 68, 9151. 

    53. [53]

      Deng, G. S.; Sun, T. F. Chin. Chem. Lett. 2012, 23, 1115. 

    54. [54]

      Chatgilialoglu, C.; Mozziconacci, O.; Tamba, M.; Bobrowski, K.; Kciuk, G.; Bertrand, M. P.; Gastaldi, S.; Timokhin, V. I. J. Phys. Chem. A 2012, 116, 7623. 

    55. [55]

      Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638. 

    56. [56]

      Chen, C.; Su, J.; Tong, X. Chem. Eur. J. 2013, 19, 5014. 

    57. [57]

      Deng, G. B.; Wang, Z. Q.; Xia, J. D.; Qian, P. C.; Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 1535. 

    58. [58]

      Liu, Y.; Zhang, J.-L.; Zhou, M.-B.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 14412.

    59. [59]

      Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845. 

    60. [60]

      Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268. 

    61. [61]

      Huang, T.; Li, C.-T. Tetrahedron Lett. 2002, 43, 403. (b) Koike, T.; Mori, A. Synlett. 2003, 1850. (c) Wolf, C.; Lerebours, R. Org Lett. 2004, 6, 1147. (d) Wolf, C.; Lerebours, R. Synthesis 2005, 2287. (e) Alacid, E.; Nàjera, C. Adv. Synth. Catal. 2006, 348, 945.

    62. [62]

      Diederich, F.; de Meijere, A. Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, Weinheim, 2004.

    63. [63]

      Pan, C.; Liu, M.; Zhao, L.; Wu, H.; Ding, J.; Cheng, J. Cat. Commun. 2008, 9, 1685. (b) Ju, J.; Nam, H.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2006, 47, 8673. (c) Ranu, B. C.; Dey, R.; Chattopadhyay, K. Tetrahedron Lett. 2008, 49, 3430. (d) Napier, S.; Marcuccio, S. M.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2008, 49, 3939. (e) Riggleman, S.; DeShong, P. J. Org. Chem. 2003, 68, 8106.

    64. [64]

      Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486. 

    65. [65]

      Michael Seganish, W.; DeShong P. Org. Lett. 2004, 6, 4379.

    66. [66]

      Yoshida, J. I.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 19, 2161. (b) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.; Kumada, K. Organometallics 1982, 1, 542. (c) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 38, 439. (d) Matsuhashi, H.; Kuroboshi, M.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1994, 35, 6507. (e) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788. (f) Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 3556.

    67. [67]

      Cheng, K.; Hu, S.; Zhao, B.; Zhang, X.-M.; Qi, C. J. Org. Chem. 2013, 78, 5022. 

    68. [68]

      Miao, H.; Wang, F.; Zhou, S.; Zhang, G.; Li, Y. Org. Biomol. Chem. 2015, 13, 4647. 

    69. [69]

      Zhang, W.; Liu, F.; Li, K.; Zhao, B. Appl. Organomet. Chem. 2014, 28, 379. 

    70. [70]

      Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633. (b) Galli, C. Chem. Rev. 1988, 88, 765. (c) Rosenmund, K. W.; Struck, E. Chem. Ber. 1919, 52, 1749. (d) Von Braun, J.; Manz, G. Justus Liebigs Ann. Chem. 1931, 488, 111. (e) Connor, J. A.; Leeming, S. W.; Price, R. J. J. Chem. Soc., Perkin Trans. 1 1990, 1127. (f) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779.

    71. [71]

      Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev., 2011, 40, 5049. (b) Ushkov, A. V.; Grushin, V. V. J. Am. Chem. Soc., 2011, 133, 10999.

    72. [72]

      Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2010, 49, 8918.

    73. [73]

      Chen, J.; Sun, Y.; Liu, B.; Liu, D.; Cheng, J. Chem. Commun. 2012, 48, 449.

    74. [74]

      Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Chem. Lett. 1990, 19, 459.

    75. [75]

      Kashiwabara, T.; Tanaka, M. Tetrahedron Lett. 2005, 46, 7125.

    76. [76]

      Zhao, Q.; Chen, L.; Lang, H.; Wu, S.; Wang, L. Chin. J. Chem. 2015, 33, 535.

    77. [77]

      Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.

    78. [78]

      Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozakil, H. Tetrahedron Lett. 1985, 26, 5585.

    79. [79]

      Takai, K.; Kimura, K.; Kuroda, T.; Hiyama1, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281.

    80. [80]

      Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048. (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (c) A. Fürstner, Chem. Rev. 1999, 99, 991.

    81. [81]

      Volla, C. M. R.; Marković, D.; Laclef, S.; Vogel, P. Chem. Eur. J. 2010, 16, 8984.

    82. [82]

      Seebach, D. Angew. Chem., Int. Ed. 1969, 8, 639. (b) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239.

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    4. [4]

      Fen Wang Qi Yang Qianfei Ye Jichao Xiao . Synthesis of Sulfinamidines via the Oxidative Sulfonamination of Sulfenamides: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 354-361. doi: 10.12461/PKU.DXHX202506059

    5. [5]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    6. [6]

      Jingxuan Zhang Weihao Jiang Siyuan Zhang Hongye Tian Ziye Huang Lin Huang Qikun Wu Jing Yang Yibin Jiang Cheng Wang . Automation and AI-Assisted Investigation of the Chemical Reactivity of Sulfosalicylic Acid. University Chemistry, 2026, 41(1): 332-345. doi: 10.12461/PKU.DXHX202505108

    7. [7]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    8. [8]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    9. [9]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Xuezheng Cao Qin Kuang Jiajia Chen . Reforming University Physics Teaching for Chemistry Majors: An Interdisciplinary Approach. University Chemistry, 2025, 40(12): 131-136. doi: 10.12461/PKU.DXHX202508031

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    15. [15]

      Yan Zhang Luhong Chen Zijian Guo . Innovative Practices in Interdisciplinary Chemistry-Biomedicine Research and Graduate Education. University Chemistry, 2025, 40(12): 137-141. doi: 10.3866/PKU.DXHX202509004

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    19. [19]

      Yinuo Wu Sheng Yin Wenhao Hu Tian-Miao Ou . Exploration and Practice in Cultivating Innovative Pharmaceutical Talent through Strengthening Fundamental Education and Interdisciplinary Integration: A Case Study of School of Pharmaceutical Science at Sun Yat-Sen University. University Chemistry, 2025, 40(10): 72-77. doi: 10.12461/PKU.DXHX202412016

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(0)
  • Abstract views(11370)
  • HTML views(4147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return