Citation: Wang Jian, Cui Dongmei. Research Progress in Non-noble Metals Catalyzed Hydroamination of Alkyenes and Alkynes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1163-1183. doi: 10.6023/cjoc201512010 shu

Research Progress in Non-noble Metals Catalyzed Hydroamination of Alkyenes and Alkynes

  • Corresponding author: Cui Dongmei, cuidongmei@zjut.edu.cn
  • Received Date: 8 December 2015
    Revised Date: 7 January 2016

Figures(31)

  • Organic compounds that contain nitrogen are very important intermediates in pharmaceutical and chemical industry. Hydroamination is the reaction that can form C—N bond with high atom economy. The research progress in non-noble metals catalyzed hydroamination of alkenes and alkynes from the perspective of reaction mechanism is categorized and summarized.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C. Chem. Eur. J. 2004, 10, 494. (b) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109. (c) Martínez, C.; Muñiz, K. Angew. Chem., Int. Ed. 2015, 54, 8287. (d) Venkat Reddy, C. R.; Urgaonkar, S.; Verkade, J. G. Org. Lett. 2005, 7, 4427. (e) Weng, B.; Li, J. H. Appl. Organomet. Chem. 2009, 23, 375. 

    5. [5]

      Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 2185. (b) Hansson, C.; Wickberg, B. J. Org. Chem. 1973, 38, 3074. (c) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397.

    6. [6]

      Flitsch, W.; Schindler, S. R. Synthesis 1975, 1975, 685. (b) Murphy, P. J.; Brennan, J. Chem. Soc. Rev. 1988, 17, 1. 

    7. [7]

    8. [8]

      Baron, M.; Metay, E.; Lemaire, M.; Popowycz, F. Green Chem. 2013, 15, 1006. (b) Cantillo, D.; Moghaddam, M. M.; Kappe, C. O. J. Org. Chem. 2013, 78, 4530. (c) Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. J. Org. Chem. 2015, 80, 7281. (d) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2015, 137, 8888. (e) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941.

    9. [9]

      Borah, A. J.; Phukan, P. Tetrahedron Lett. 2012, 53, 3035. (b) Liu, P.; Wang, Z.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1994. (c) Moriyama, K.; Ishida, K.; Togo, H. Org. Lett. 2012, 14, 946. (d) Yoshimura, A.; Middleton, K. R.; Luedtke, M. W.; Zhu, C.; Zhdankin, V. V. J. Org. Chem. 2012, 77, 11399. (e) Zagulyaeva, A. A.; Banek, C. T.; Yusubov, M. S.; Zhdankin, V. V. Org. Lett. 2010, 12, 4644. 

    10. [10]

    11. [11]

      Imase, H.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 3563. (b) Lefranc, J.; Tetlow, D. J.; Donnard, M.; Minassi, A.; Gálvez, E.; Clayden, J. Org. Lett. 2011, 13, 296. (c) Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Org. Lett. 2007, 9, 4223.

    12. [12]

      McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323. 

    13. [13]

      Knölker, H.-J.; Agarwal, S. Tetrahedron Lett. 2005, 46, 1173.

    14. [14]

      Chernyak, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743. 

    15. [15]

      Trinh, T. T. H.; Nguyen, K. H.; de Aguiar Amaral, P.; Gouault, N. Beilstein J. Org. Chem. 2013, 9, 2042.

    16. [16]

      Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460. 

    17. [17]

      Bates, R. W.; Dewey, M. R. Org. Lett. 2009, 11, 3706. 

    18. [18]

      Wang, C.; Sperry, J. Org. Lett. 2011, 13, 6444.

    19. [19]

      Toske, S. G.; Jensen, P. R.; Kauffman, C. A.; Fenical, W. Tetrahedron 1998, 54, 13459. 

    20. [20]

      Takabe, K.; Katagiri, T.; Tanaka, J.; Fujita, T.; Watanabe, S.; Suga, K. Org. Synth. 1989, 67, 44.

    21. [21]

    22. [22]

      Kozlov, N.; Dinaburskaya, B.; Rubina, T. J. Gen. Chem. USSR 1936, 1341. (b) Loritsch, J. A.; Vogt, R. R. J. Am. Chem. Soc. 1939, 61, 1462.

    23. [23]

      Gasc, M. B.; Lattes, A.; Perie, J. J. Tetrahedron 1983, 39, 703. (b) Larock, R. C. Angew. Chem., Int. Ed. 1978, 17, 27. (c) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239. (d) Stipa, P.; Finet, J. P.; Le Moigne, F.; Tordo, P. J. Org. Chem. 1993, 58, 4465. (e) Tokuda, M.; Yamada, Y.; Suginome, H. Chem. Lett. 1988, 17, 2. 

    24. [24]

      Benson, S. W. In Thermodynamical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., John Wiley and Sons, New York, 1976. (b) Brunet, J.-J.; Neibecker, D.; Niedercorn, F. J. Mol. Catal. 1989, 49, 235. (c) Johns, A. M.; Sakai, N.; Ridder, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9306. (d) Roundhill, D. M. Chem. Rev. 1992, 92, 1. (e) Steinborn, D.; Taube, R. Z. Chem. 1986, 26, 349.

    25. [25]

      Taube, R. In Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, Eds.: Cornils, B.; Herrmann, W. A., VCH, Weinheim, 1996. (b) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2002, 124, 14542.

    26. [26]

      Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (b) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098.

    27. [27]

      Howk, B. W.; Little, E. L.; Scott, S. L.; Whitman, G. M. J. Am. Chem. Soc. 1954, 76, 1899. 

    28. [28]

      Stroh, R.; Ebersberger, J.; Haberland, H.; Hahn, W. Angew. Chem. 1957, 69, 124. (b) Wollensak, J.; Closson, R. D. Org. Synth. 1963, 43, 45.

    29. [29]

      Closson, R. D.; Napolitano, J. P.; Ecke, G. G.; Kolka, A. J. J. Org. Chem. 1957, 22, 646. 

    30. [30]

      Steinborn, D.; Thies, B.; Wagner, I.; Taube, R. Z. Chem. 1989, 29, 333.

    31. [31]

      Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57, 1917.

    32. [32]

      Narita, T.; Imai, N.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 1242. 

    33. [33]

      Imai, N.; Narita, T.; Tsuruta, T. Tetrahedron Lett. 1971, 12, 3517. 

    34. [34]

      Narita, T.; Yamaguchi, T.; Tsuruta, T. Bull. Chem. Soc. Jpn. 1973, 46, 3825. 

    35. [35]

      Kouklovsky, C.; Pouilhès, A.; Baltaze, J.-P. Synlett 2013, 24, 1805.

    36. [36]

      Zhang, W.; Werness, J. B.; Tang, W. Org. Lett. 2008, 10, 2023.

    37. [37]

      Rousseau, G.; Lebeuf, R.; Schenk, K.; Castet, F.; Robert, F.; Landais, Y. Chem. Eur. J. 2014, 20, 14771. 

    38. [38]

      Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275. (b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. 

    39. [39]

      Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45, 2741. (b) Harder, S. Angew. Chem., Int. Ed. 2004, 43, 2714. 

    40. [40]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Angew. Chem., Int. Ed. 2012, 51, 4943. 

    41. [41]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 13445. 

    42. [42]

      Brinkmann, C.; Barrett, A. G.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2012, 134, 2193. 

    43. [43]

      Reid, S.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Org. Lett. 2014, 16, 6016. 

    44. [44]

      Glock, C.; Gorls, H.; Westerhausen, M. Chem. Commun. 2012, 48, 7094.

    45. [45]

      Younis, F. M.; Krieck, S.; Görls, H.; Westerhausen, M. Organometallics 2015, 34, 3577.

    46. [46]

      Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042. 

    47. [47]

      Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670. 

    48. [48]

      Datta, S.; Gamer, M. T.; Roesky, P. W. Organometallics 2008, 27, 1207. (b) Datta, S.; Roesky, P. W.; Blechert, S. Organometallics 2007, 26, 4392. 

    49. [49]

      Barrett, A. G. M.; Brinkmann, C.; Crimmin, M. R.; Hill, M. S.; Hunt, P.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 12906. 

    50. [50]

      Liu, B.; Roisnel, T.; Carpentier, J. F.; Sarazin, Y. Chem. Eur. J. 2013, 19, 2784. 

    51. [51]

      Romero, N.; Rosca, S. C.; Sarazin, Y.; Carpentier, J. F.; Vendier, L.; Mallet-Ladeira, S.; Dinoi, C.; Etienne, M. Chem. Eur. J. 2015, 21, 4115. 

    52. [52]

      Buch, F.; Harder, S. Z. Naturforsch. B 2008, 63, 4115.

    53. [53]

      Wixey, J. S.; Ward, B. D. Chem. Commun. 2011, 47, 5449. 

    54. [54]

      Nixon, T. D.; Ward, B. D. Chem. Commun. 2012, 48, 11790. 

    55. [55]

      Zhang, X.; Emge, T. J.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2012, 51, 394. 

    56. [56]

      Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871. (b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949. 

    57. [57]

       

    58. [58]

    59. [59]

      Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584. 

    60. [60]

      Kissel, A. A.; Mahrova, T. V.; Lyubov, D. M.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A.; Del Rosal, I.; Maron, L. Dalton Trans. 2015, 44, 12137.

    61. [61]

      Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem. Eur. J. 2003, 9, 4796. (b) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748. (c) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23, 2601. 

    62. [62]

      Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108. (b) Gagne, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 1716. 

    63. [63]

      Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439. (b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295. 

    64. [64]

      Inagaki, S.; Ikeda, H. Tetrahedron Lett. 2015, 56, 5587. 

    65. [65]

      Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707. (b) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. 

    66. [66]

      Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998, 17, 1452. 

    67. [67]

      Bürgstein, M. R.; Berberich, H.; Roesky, P. W. Chem. Eur. J. 2001, 7, 3078. 

    68. [68]

      Bambirra, S.; Tsurugi, H.; van Leusen, D.; Hessen, B. Dalton Trans. 2006, 1157.

    69. [69]

      Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; H. Teuben, J. Chem. Commun. 2001, 637.

    70. [70]

      Lauterwasser, F.; Hayes, P. G.; Bräse, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234. 

    71. [71]

      Huynh, K.; Anderson, B. K.; Livinghouse, T. Tetrahedron Lett. 2015, 56, 3658. 

    72. [72]

      Otero, A.; Lara-Sánchez, A.; Castro-Osma, J. A.; Márquez- Segovia, I.; Alonso-Moreno, C.; Fernández-Baeza, J.; Sánchez- Barba, L. F.; Rodríguez, A. M. New J. Chem. 2015, 39, 7672. 

    73. [73]

      Pohlki, F.; Doye, S. Angew. Chem., Int. Ed. 2001, 40, 2305. (b) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed. 2001, 40, 4632. (c) Tobisch, S. Chem. Eur. J. 2007, 13, 4884. 

    74. [74]

      Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. 

    75. [75]

      Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894.

    76. [76]

      Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959. (b) Bexrud, J. A.; Schafer, L. L. Dalton Trans. 2010, 39, 361. (c) Kim, H.; Lee, P. H.; Livinghouse, T. Chem. Commun. 2005, 5205. (d) Müller, C.; Loos, C.; Schulenberg, N.; Doye, S. Eur. J. Org. Chem. 2006, 2006, 2499. (e) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2009, 29, 24. 

    77. [77]

      Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 13405. (b) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. Chem. Commun. 2004, 704. 

    78. [78]

      Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961. 

    79. [79]

      Heutling, A.; Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059. (b) Heutling, A.; Severin, R.; Doye, S. Synthesis 2005, 1200. (c) Pohlki, F.; Heutling, A.; Bytschkov, I.; Hotopp, T.; Doye, S. Synlett 2002, 799. 

    80. [80]

      Tillack, A.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 2541. (b) Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, 10, 2409. (c) Tillack, A.; Khedkar, V.; Beller, M. Tetrahedron Lett. 2004, 45, 8875. 

    81. [81]

      Buil, M. L.; Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2007, 26, 554. (b) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2005, 24, 5084. (c) Esteruelas, M. A.; López, A. M.; Mateo, A. C.; Oñate, E. Organometallics 2006, 25, 1448.

    82. [82]

      Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967. (b) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2002, 21, 5148. 

    83. [83]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

    84. [84]

      Ackermann, L. Organometallics 2003, 22, 4367. 

    85. [85]

      Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne, P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116. 

    86. [86]

      Tonks, I. A.; Meier, J. C.; Bercaw, J. E. Organometallics 2013, 32, 3451. 

    87. [87]

      Yim, J. C.; Bexrud, J. A.; Ayinla, R. O.; Leitch, D. C.; Schafer, L. L. J. Org. Chem. 2014, 79, 2015. 

    88. [88]

      Brahms, C.; Tholen, P.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2013, 7583.

    89. [89]

      Dorfler, J.; Preuss, T.; Brahms, C.; Scheuer, D.; Doye, S. Dalton Trans 2015, 44, 12149.

    90. [90]

      Lühning, L. H.; Brahms, C.; Nimoth, J. P.; Schmidtmann, M.; Doye, S. Z. Anorg. Allg. Chem. 2015, 641, 2071. 

    91. [91]

      Liu, J.; Cao, Y.; Li, L.; Pei, H.; Chen, Y.; Hu, J.; Qin, Y.; Li, Y.; Li, W.; Liu, W. RSC Adv. 2015, 5, 10318.

    92. [92]

      Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. 

    93. [93]

      Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956. 

    94. [94]

      Tobisch, S. Dalton Trans. 2006, 4277.

    95. [95]

      Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 18246. 

    96. [96]

      Leitch, D. C.; Turner, C. S.; Schafer, L. L. Angew. Chem., Int. Ed. 2010, 49, 6382. 

    97. [97]

      Leitch, D. C.; Platel, R. H.; Schafer, L. L. J. Am. Chem. Soc. 2011, 133, 15453. 

    98. [98]

      Allan, L. E. N.; Clarkson, G. J.; Fox, D. J.; Gott, A. L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308. 

    99. [99]

      Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422. 

    100. [100]

      Wang, X.; Chen, Z.; Sun, X. -L.; Tang, Y.; Xie, Z. Org. Lett. 2011, 13, 4758.

    101. [101]

      Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Chem. Commun. 2015, 51, 7633.

    102. [102]

      Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y.; Shen, Q. Dalton Trans. 2015, 44, 20352.

    103. [103]

      Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004, 23, 1845.

    104. [104]

      Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519. (b) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2006, 8, 2445. 

    105. [105]

      Anderson, L. L.; Schmidt, J. A.; Arnold, J.; Bergman, R. G. Organometallics 2006, 25, 3394. 

    106. [106]

      Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731. 

    107. [107]

      Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Organometallics 2007, 26, 1729. (b) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354. 

    108. [108]

      Manna, K.; Everett, W. C.; Schoendorff, G.; Ellern, A.; Windus, T. L.; Sadow, A. D. J. Am. Chem. Soc. 2013, 135, 7235. (b) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865. 

    109. [109]

      Zhou, X.; Wei, B.; Sun, X.-L.; Tang, Y.; Xie, Z. Chem. Commun. 2015, 51, 5751.

    110. [110]

      Zhai, H.; Borzenko, A.; Lau, Y. Y.; Ahn, S. H.; Schafer, L. L. Angew. Chem., Int. Ed. 2012, 51, 12219. 

    111. [111]

      Manna, K.; Eedugurala, N.; Sadow, A. D. J. Am. Chem. Soc. 2015, 137, 425. 

    112. [112]

      Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080. 

    113. [113]

      Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (b) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. 

    114. [114]

      Akermark, B.; Almemark, M.; Jutandm, A. Acta Chem. Scand. B 1982, 36. (b) Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937. (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.

    115. [115]

      Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (b) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371. 

    116. [116]

      Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. 1997, 36, 2225. 

    117. [117]

      Bauer, E. B.; Andavan, G. S.; Hollis, T. K.; Rubio, R. J.; Cho, J.; Kuchenbeiser, G. R.; Helgert, T. R.; Letko, C. S.; Tham, F. S. Org. Lett. 2008, 10, 1175. (b) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. (c) Dorta, R.; Egli, P.; Zürcher, F.; Togni, A. J. Am. Chem. Soc. 1997, 119, 10857. (d) Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383. 

    118. [118]

      Ohmiya, H.; Moriya, T.; Sawamura, M. Org. Lett. 2009, 11, 2145.

    119. [119]

      Pouy, M. J.; Delp, S. A.; Uddin, J.; Ramdeen, V. M.; Cochrane, N. A.; Fortman, G. C.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M.; Myers, W. H. ACS Catal. 2012, 2, 2182. 

    120. [120]

      Bahri, J.; Blieck, R.; Jamoussi, B.; Taillefer, M.; Monnier, F. Chem. Commun. 2015, 51, 11210.

    121. [121]

      Biyikal, M.; Löhnwitz, K.; Meyer, N.; Dochnahl, M.; Roesky, P. W.; Blechert, S. Eur. J. Inorg. Chem. 2010, 2010, 1070.

    122. [122]

      Sarish, S. P.; Schaffner, D.; Sun, Y.; Thiel, W. R. Chem. Commun. 2013, 49, 9672. 

    123. [123]

      Bernoud, E.; Oulie, P.; Guillot, R.; Mellah, M.; Hannedouche, J. Angew. Chem., Int. Ed. 2014, 53, 4930. 

    124. [124]

      Ambuehl, J.; Pregosin, P. S.; Venanzi, L. M.; Consiglio, G.; Bachechi, F.; Zambonelli, L. J. Organomet. Chem. 1979, 181, 255. (b) Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744. 

    125. [125]

      Müller, T. E.; Berger, M.; Grosche, M.; Herdtweck, E.; Schmidtchen, F. P. Organometallics 2001, 20, 4384. (b) Seul, J. M.; Park, S. J. Chem. Soc., Dalton Trans. 2002, 1153. 

    126. [126]

      Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349. (b) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 2006, 4555.

    127. [127]

      Cheng, X.; Hii, K. K. M. Tetrahedron 2001, 57, 5445. 

    128. [128]

      Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366. 

    129. [129]

      Karshtedt, D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640. (b) Li, X.; Chianese, A. R.; Vogel, T.; Crabtree, R. H. Org. Lett. 2005, 7, 5437. (c) Senn, H. M.; Blöchl, P. E.; Togni, A. J. Am. Chem. Soc. 2000, 122, 4098. (d) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798. 

    130. [130]

      Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Müller, T.; Thiel, O. Chem. Eur. J. 1999, 5, 1306. (b) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166. 

    131. [131]

      Su, R. Q.; Müller, T. E. Tetrahedron 2001, 57, 6027. (b) Su, R. Q.; Nguyen, V. N.; Müller, T. E. Top. Catal. 2003, 22, 23. 

    132. [132]

      Müller, T. E.; Lercher, J. A.; Van Nhu, N. AIChE J. 2003, 49, 214. 

    133. [133]

      Müller, T. E.; Pleier, A.-K. J. Chem. Soc., Dalton Trans. 1999, 583.

    134. [134]

      Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K. Organometallics 2000, 19, 170.

    135. [135]

      Penzien, J.; Haeßner, C.; Jentys, A.; Köhler, K.; Müller, T. E.; Lercher, J. A. J. Catal. 2004, 221, 302. 

    136. [136]

      Shanbhag, G. V.; Kumbar, S. M.; Joseph, T.; Halligudi, S. B. Tetrahedron Lett. 2006, 47, 141. 

    137. [137]

      Neff, V.; Muller, T. E.; Lercher, J. A. Chem. Commun. 2002, 906.

    138. [138]

      Shanbhag, G. V.; Halligudi, S. J. Mol. Catal. A: Chem. 2004, 222, 223. 

    139. [139]

      Peeters, A.; Valvekens, P.; Ameloot, R.; Sankar, G.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2013, 3, 597. 

    140. [140]

      Lühl, A.; Nayek, H. P.; Blechert, S.; Roesky, P. W. Chem. Commun. 2011, 47, 8280. 

    141. [141]

      Lühl, A.; Hartenstein, L.; Blechert, S.; Roesky, P. W. Organometallics 2012, 31, 7109. (b) Pissarek, J.-W.; Schlesiger, D.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2009, 351, 2081. 

    142. [142]

      Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.

    143. [143]

      Liu, G.-Q.; Li, Y.-M. Tetrahedron Lett. 2011, 52, 7168.

    144. [144]

      Tsuchimoto, T.; Aoki, K.; Wagatsuma, T.; Suzuki, Y. Eur. J. Org. Chem. 2008, 2008, 4035.

    145. [145]

      Pews-Davtyan, A.; Beller, M. Chem. Commun. 2011, 47, 2152.

    146. [146]

      Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377. (b) Patil, N. T.; Singh, V. Chem. Commun. 2011, 47, 11116.

    147. [147]

      Zille, M.; Stolle, A.; Wild, A.; Schubert, U. S. RSC Adv. 2014, 4, 13126. 

    148. [148]

      Chilleck, M. A.; Hartenstein, L.; Braun, T.; Roesky, P. W.; Braun, B. Chem. Eur. J. 2015, 21, 2594. 

    149. [149]

      Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669. 

    150. [150]

      Reyes-Sa'nchez, A. N.; Cañavera-Buelvas, F.; Barrios- Francisco, R.; Cifuentes-Vaca, O. L.; Flores-Alamo, M.; Garci'a, J. J. Organometallics 2011, 30, 3340. 

    151. [151]

      Reyes-Sanchez, A.; Garcia-Ventura, I.; Garcia, J. J. Dalton. Trans. 2014, 43, 1762. 

    152. [152]

      Manan, R. S.; Kilaru, P.; Zhao, P. J. Am. Chem. Soc. 2015, 137, 6136. 

    153. [153]

      Ackermann, L.; Song, W.; Sandmann, R. J. Organomet. Chem. 2011, 696, 195. 

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Wenyu Yuan Ying Wang Shuni Li Xiaolin Zhu Quanguo Zhai Shengli Gao . Preparation and Purification of Alkali Metals. University Chemistry, 2026, 41(2): 218-231. doi: 10.12461/PKU.DXHX202502111

    3. [3]

      Wanping Chen . Construction of Knowledge Logic and Discovery through Reasoning: Summarizing the Reaction Patterns of Reactive Metals with Oxygen. University Chemistry, 2026, 41(2): 95-102. doi: 10.12461/PKU.DXHX202503108

    4. [4]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Jing Tan Bo Zheng Lingyan Gao . Application of Crown Ether-Based Artificial Ion Transporters. University Chemistry, 2026, 41(2): 232-237. doi: 10.12461/PKU.DXHX202501010

    7. [7]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    13. [13]

      Feifan ZhaoFeiyan XuJiaguo Yu . Interfacial stabilization of alkali metal oxides on carbon spheres for high-performance CO2 chemisorption. Acta Physico-Chimica Sinica, 2026, 42(5): 100234-0. doi: 10.1016/j.actphy.2025.100234

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    20. [20]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(7280)
  • HTML views(1577)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return