Citation: Liu Yuejia, Zhang Xiaojuan, Ning Hongli, Yang Haijun. Studies on the Synthesis and Properties of Energetic Ionic Liquids Based on Imidazolium Compounds[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 1133-1142. doi: 10.6023/cjoc201511034 shu

Studies on the Synthesis and Properties of Energetic Ionic Liquids Based on Imidazolium Compounds

  • Corresponding author: Yang Haijun, yanghai_1976@163.com
  • Received Date: 18 November 2015
    Revised Date: 15 December 2015

Figures(10)

  • Starting from N-methylimidazole, 1,2-dimethylimidazole and 2-chloroethanol, a series of imidazolium-based energetic ionic liquids were synthesized via quaternization, nitration and metathesis reactions. All the energetic ionic liquids were characterized by ultraviolet visible spectrum (UV-Vis), infrared spectrum (IR), mass spectrometry (MS), nuclear magnetic resonance (NMR) and elemental analysis. The solubility study of these ionic liquids was carried out with commonly used organic solvents, which showed that the energetic ionic liquids dissolved easily in polar solvents. Moreover, the ionic liquids had good thermo-stabilities indicated by thermal gravimetric analysis (TG-DTG) and differential scanning calorimetry (DSC). TG-DTG analyses showed that N-nitrooxyethylimidazolium nitrate decomposed at about 160 ℃ and N-hydroxyethylimida-zolium ionic salts decomposed above 190 ℃. Furthermore, there was an obvious glass transition process for the energetic ionic liquids based on 1-(2-nitrooxyethyl)-3-methylimidazolium and N-hydroxyethylimidazolium during the secondary heating process of DSC, which was the unique property of ionic liquids. Their densities and standard enthalpies of formation and detonation properties were calculated and analyzed.
  • 加载中
    1. [1]

       

    2. [2]

      Drake, G.; Hawkins, T.; Brand, A.; Hall, L.; McKay, M.; Vij, A.; Ismail, I. Propellants, Explos., Pyrotech. 2003, 28, 174. (b) Wang, R.-H.; Guo, Y.; Zeng, Z.; Twamley, B.; Shreeve. J. M. Chem. Eur. J. 2009, 15, 2625. (c) Schneider, S.; Hawkins, T.; Rosander, M.; Mills, J.; Brand, A.; Hudgens, L.; Warmoth, G.; Vij, A. Inorg. Chem. 2008, 47, 3617. (d) Tao, G.-H.; Guo, Y.; Joo, Y.; Twamley, B.; Shreeve, J. M. J. Mater. Chem. 2008, 18, 5524. (e) He, L.; Tao, G.-H.; Parrish, D. A.; Shreeve, J. M. Inorg. Chem. 2011, 50, 679. 

    3. [3]

      Katritzky, A. R.; Yang, H.; Zhang, D.; Kirichenko, K.; Smiglak, M.; Holbrey, J. D.; Reichert, W. M.; Rogers, R. D. New J. Chem. 2006, 30, 349. (b) Dong, L.-L.; He, L.; Liu, H.-Y.; Tao, G.-H.; Nie, F.-D.; Huang, M.; Hu, C.-W. Eur. J. Inorg. Chem. 2013, 2013, 5009. (c) Smiglak, M.; Hines, C. C.; Wilson, T. B.; Singh, S.; Vincek, A. S.; Kirichenko, K.; Katritzky, A. R.; Rogers, R. D. Chem. Eur. J. 2010, 16, 1572. 

    4. [4]

      Lin, Q.-H.; Li, Y.-C.; Li, Y.-Y.; Wang, Z.; Liu, W.; Qi, C.; Pang, S.-P. J. Mater. Chem. 2012, 22, 666. (b) Tao, G.-H.; Huang, Y.; Boatz, J. A.; Shreeve, J. M. Chem. Eur. J. 2008, 14, 11167. (c) Xue, H.; Gao, H.-X.; Twamley, B.; Shreeve, J. M. Chem. Mater. 2007, 19, 1731.

    5. [5]

      Klapötke, T. M.; Stierstorfer, J. Dalton Trans. 2009, 643. (b) Xue, H.; Arritt, S. W.; Twamley, B.; Shreeve, J. M. Inorg. Chem. 2004, 43, 7972. (c) Klapötke, T. M.; Miró Sabaté, C.; Rusan, M. Z. Anorg. Allg. Chem. 2008, 634, 688.

    6. [6]

      Sabate, C. M.; Delalu, H.; Jeanneau, E. Chem. Asian J. 2012, 7, 1085. (b) Sabate, C. M.; Delalu, H.; Jeanneau, E. Chem. Asian J. 2012, 7, 2080. (c) Sabaté, C. M.; Jeanneau, E.; Delalu, H. Eur. J. Inorg. Chem. 2012, 2012, 2418. 

    7. [7]

       

    8. [8]

      Katritzky, A. R.; Singh, S.; Kirichenko, K.; Holbrey, J. D.; Smiglak, M.; Reichert, W. M.; Rogers, R. D. Chem. Commun. 2005, 868. (b) Smiglak, M.; Hines, C. C.; Reichert, W. M.; Vincek, A. S.; Katritzky, A. R.; Thrasher, J. S.; Sun, L.; McCrary, P. D.; Beasley, P. A.; Kelley, S. P.; Rogers, R. D. New J. Chem. 2012, 36, 702. (c) Wang, R.-H.; Gao, H.-X.; Ye, C.-F.; Shreeve, J. M. Chem. Mater.2006, 19, 144.

    9. [9]

      Smiglak, M.; Hines, C. C.; Reichert, W. M.; Shamshina, J. L.; Beasley, P. A.; McCrary, P. D.; Kelley, S. P.; Rogers, R. D. New J. Chem. 2013, 37, 1461. 

    10. [10]

      Schneider, S.; Hawkins, T.; Rosander, M.; Mills, J.; Vaghjiani, G.; Chambreau, S. Inorg. Chem. 2008, 47, 6082.

    11. [11]

      Tao, G.-H.; Tang, M.; He, L.; Ji, S.-P.; Nie, F.-D.; Huang, M. Eur. J. Inorg. Chem. 2012, 2012, 3070.

    12. [12]

      Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Energy Fuels 2008, 22, 2871.

    13. [13]

      Zhang, Q.-H.; Yin, P.; Zhang, J.-H.; Shreeve, J. M. Chem. Eur. J. 2014, 20, 6909. 

    14. [14]

      Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Chem. Eur. J. 2002, 8, 3671. 

    15. [15]

      Vokin, A. I.; Sherstyannikova, L. V.; Kanitskaya, L. V.; Abzaeva, K. A.; Lopyrev, V. A.; Turchaninov, V. K.Russ. J. Gen. Chem. 2001, 71, 1708. (b) Bottaro, J. C.; Penwell, P. l E.; Schmitt, R. J. J. Am. Chem. Soc. 1997, 119, 9405. (c) Eisaku, N.; Takagaki, M.; Nakaoka, C.; Uchida, M.; Taniguchi, H. J. Org. Chem. 1999, 64, 3151. 

    16. [16]

       

    17. [17]

    18. [18]

    19. [19]

      Nazeri, G. H.; Mastour, R.; Fayaznia, M. Iran. J. Chem. Chem. Eng. 2008, 27, 85.

    20. [20]

      D'Aprano, A.; Sesta, B. J. Phys. Chem. 1987, 91, 2415. 

    21. [21]

      Mihelj, T.; Tomasic, V.; Biliskov, N.; Liu, F. Spectrochim. Acta, Part A 2015, 124, 12.

    22. [22]

      Murotani, M.; Mura, H.; Takeda, M.; Shibafuchi, H. EP 669325, 1994.[Chem. Abstr. 1995, 124, 29762] (b) Klapotke, T. M.; Sabate, C. M.; Welch, J. M. Dalton Trans. 2008, 6372.

    23. [23]

       

    24. [24]

      Sun, J.; Zhang, S.-J.; Cheng, W.-G.; Ren, J.-Y. Tetrahedron Lett. 2008, 49, 3588.

  • 加载中
    1. [1]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(2066)
  • HTML views(439)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return