Citation: Zhao Suyan, Wang Zuli. Synthesis of Phenols under Mild Conditions in Water Using Recyclable Chitosan@Copper as Catalyst[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 862-866. doi: 10.6023/cjoc201510027 shu

Synthesis of Phenols under Mild Conditions in Water Using Recyclable Chitosan@Copper as Catalyst

  • Corresponding author: Wang Zuli, 
  • Received Date: 23 October 2015
    Available Online: 16 November 2015

    Fund Project: 国家自然科学基金(No.21402103) (No.21402103)山东省优秀中青年基金(No.BS2013YY024) (No.BS2013YY024)中国博士后基金(No.150030)资助项目. (No.150030)

  • A green and efficient protocol for the synthesis of phenols using recyclable chitosan@copper as catalyst was developed. Phenols can be obtained in moderate to excellent yields. The catalyst can be recycled and reused for five times without significant loss of its catalytic activity.
  • 加载中
    1. [1]

      [1] Rappoport, Z. The Chemistry of Phenols, Wiley-VCH, Weinheim,Germany, 2003.

    2. [2]

      [2] Zhang, R. X.; Zhang, X. D. Chemical Industry 2008, 26, 47 (in Chinese). (张日新, 张晓东, 化学工业, 2008, 26, 47.)

    3. [3]

      [3] (a) Anderson, K. W.; Ikawa, T. R.; Tundel, E. S.; Buchwald, L. J. Am. Chem. Soc.2006, 128, 10694.

    4. [4]

      (b) Willis, M. C. Angew. Chem., Int. Ed. 2007, 46, 3402.

    5. [5]

      (c) Sergeev, A. G.; Schulz, T.; Torborg, C.; Spannenberg, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 7595.

    6. [6]

      (d) Schulz, T.; Torborg, C.; Schäffner, B.; Huang, J.; Zapf, A.; Kadyrov, R.; Börner, A.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 918.

    7. [7]

      (e) Gallon, B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. L. Angew. Chem., Int. Ed. 2007, 46, 7251.

    8. [8]

      (f) Chen, G. S.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2007, 48, 473.

    9. [9]

      [4] (a) Yang, D. S.; Fu, H. Chem. Eur. J. 2010, 16, 2366.

    10. [10]

      (b) Kormos, C. M.; Leadbeater, N. E. Tetrahedron 2006, 62, 4728;

    11. [11]

      (c) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 8725.

    12. [12]

      (d) Zhao, D. B.; Wu, N. J.; Zhang, S.; Xi, P.; Su, X. Y.; Lan, J. B.; You, J. S. Angew. Chem., Int. Ed. 2009, 48, 8729.

    13. [13]

      [5] Yin, L.; Leibescher, J. Chem. Rev. 2007, 107, 133.

    14. [14]

      [6] Li, B.; Li, M.; Yao, C. H.; Shi, Y. F.; Ye, D. R.; Wu, J.; Zhao, D. Y. J. Mater. Chem. 2013, 1, 6742.

    15. [15]

      [7] For selected examples, see: (a) Kantam, M. L.; Yadav, Y.; Laha, Y.; Srinivas, P.; Sreedhar, B.; Figueras, F. J. Org. Chem. 2009, 74, 4608.

    16. [16]

      (b) Kundu, D.; Chatterjee, T.; Ranu, B. C. Adv. Synth. Catal. 2013, 355, 2285.

    17. [17]

      (c) Brahmachari, G.; Laskar, S.; Barik, P. RSC Adv. 2013, 3, 142;

    18. [18]

      (d) Parella, R.; Kumar, A; Babu, S. A. Tetrahedron Lett. 2013, 54, 1738.

    19. [19]

      (e) Yang, S.; Wu, C.; Zhou, H.; Yang, Y.; Zhao, Y.; Wang, C.; Yang, W.; Xu, J. Adv. Synth. Catal. 2013, 355, 53.

    20. [20]

      (f) Swapna, K.; Murthy, S. N.; Jyothi, M. T.; Nageswar, Y. V. D. Org. Biomol. Chem. 2011, 5989.

    21. [21]

      (g) Hudson, R.; Ishikawa, S.; Li, C.-J.; Moores, A. Synlett 2013, 1637.

    22. [22]

      (h) Dandia, A.; Jain, A. K.; Sharma, S. RSC Adv. 2013, 3, 2924.

    23. [23]

      (i) Kumar, A. S.; Reddy, M.; M.Knorn, A.; Reiser, O.; Sreedhar, B. Eur. J. Org. Chem. 2013, 4, 674.

    24. [24]

      (j) Wang, Z. L. RSC Adv. 2015, 5, 5563.

    25. [25]

      [8] Zhang, J.; Han, D.; Zhang, H.; Chaker, M.; Zhao, Y.; Ma, D. Chem. Commun. 2012, 48, 11510.

    26. [26]

      [9] (a) Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Appl. Catal. 2011, 393, 231.

    27. [27]

      (b) Lasri, J.; Leod, T. C. O. M.; Pombeiro, A. J. L. Appl. Catal. 2011, 393, 94.

    28. [28]

      (c) Yi, S. S.; Lee, D. H.; Sin, E.; Lee, Y. S. Tetrahedron Lett. 2007, 48, 6771.

    29. [29]

      [10] (a) Shen, C.; Xu, J.; Yu, W.; Zhang, P. Green Chem. 2014, 16, 3007.

    30. [30]

      (b) Shen, C.; Xu, J.; Yu, W. B.; Zhang, P. F. Green Chem. 2014, 16, 3007.

    31. [31]

      [11] Yang, B.; Mao, Z. X.; Zhu, X. H.; Wan, Y. Q. Catal. Commun. 2015, 60, 92.

    32. [32]

      [12] Pal, M.; Parasuraman, K.; Yeleswarapu, K. R. Org. Lett. 2003, 5, 349.

    33. [33]

      [13] Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623.

    34. [34]

      [14] Jiang, M.; Yang, H. J.; Li, Y.; Jia, Z. Y.; Fu, H. Chin. Chem. Lett. 2014, 25, 715.

    35. [35]

      [15] Yang, D. S.; An, B. J.; Wei, W.; Jiang, M.; You, J. M.; Wang, H. Tetrahedron 2014, 70, 3630.

    36. [36]

      [16] Xu, J. M.; Wang, X. Y.; Shao, C. W.; Su, D. Y.; Cheng, G. L.; Hu, Y. F. Org. Lett. 2010, 12, 164.

    37. [37]

      [17] Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 8725.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    8. [8]

      Lingling LiZhe Chen . Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy. Acta Physico-Chimica Sinica, 2026, 42(4): 100215-0. doi: 10.1016/j.actphy.2025.100215

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Sen Lin Rong Jiang Xuefeng Lu Guohui Jiang Kaining Ding Jinshui Zhang Xinchen Wang . Promoting the Integration of Science and Education through Digital Intelligence Technology: Data-Driven Development of Efficient Water Electrolysis Catalysts in Comprehensive Chemical Experiment Teaching. University Chemistry, 2026, 41(1): 188-203. doi: 10.12461/PKU.DXHX202505090

    11. [11]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

Metrics
  • PDF Downloads(0)
  • Abstract views(1272)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return