Citation: Xiao Jianjun, Qiu Zumin, He Weijuan, Du Chengcheng, Zhou Wei. Progress in Platinum Catalysts Supported by Inorganic Carriers for Hydrosilylation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 987-999. doi: 10.6023/cjoc201509028 shu

Progress in Platinum Catalysts Supported by Inorganic Carriers for Hydrosilylation

  • Corresponding author: Qiu Zumin, mzqiu@ncu.edu.cn
  • Received Date: 21 September 2015
    Revised Date: 20 December 2015

    Fund Project: and the Natural Science Foundation of Jiangxi Province No. 20122BAB203021Project supported by the National Natural Science Foundation of China No. 21276121

Figures(16)

  • Hydrosilylation catalyzed by transition metals or their complexes is one of the most important ways to synthesize organosilicones, and platinum catalysts are widely used. Inorganic carriers supported platinum catalysts not only can avoid the disadvantages of homogeneous catalysts, such as corroding reactor, pain platinum recovery and low reaction selectivity, but also can be available for sequential reactions due to the good mechanical strength and stability in reaction medium. A lot of literatures relating to platinum catalysts supported by inorganic carriers for hydrosilylation have been published. The platinum compounds have been supported by carbon carriers, silica, metallic oxide, molecular sieve or other inorganic carriers via direct load method or complexation between platinum and vinyl, phosphino, amino, arsino or mercapto functional group modified on the surface of the carriers. The research progresses in preparation, structure and properties of inorganic carriers supported platinum catalysts for hydrosilylation during recent 15 years are summarized with the description of their development trend.
  • 加载中
    1. [1]

      Hiyama, T.; Kusumoto, T. In Comprehensive Organic Synthesis, Vol. 8, Eds.: Trost, B. M.; Fleming, I., Pergamon, New York, 1991, pp. 763~792.

    2. [2]

      Marciniec, B. Comprehensive Handbook on Hydrosilylation, Pergamon, New York, 1992, pp. 3~7.

    3. [3]

    4. [4]

    5. [5]

      Sommer, L. H.; Pietrusza, E. W.; Whitmore, F. C. J. Am. Chem. Soc. 1947, 69, 188.

    6. [6]

      Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61. 

    7. [7]

      Brunner, H.; Eder, R.; Hammer, B.; Klement, U. J. Organomet. Chem. 1990, 394, 555. 

    8. [8]

      Zhou, S.; Fleischer, S.; Junge, K.; Das, S.; Addis, D.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 8121. 

    9. [9]

      [9] Enthaler, S. Chem. Cat. Chem. 2011, 3, 666.

    10. [10]

    11. [11]

      Ojima, I. In Organic Silicon Compounds, Vol. 1~2, Eds.: Patai, S.; Rappoport, Z., John Wiley and Sons, New York, 1989, pp. 1479~1526.

    12. [12]

    13. [13]

    14. [14]

      Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957, 79, 974. 

    15. [15]

    16. [16]

      Karstedt, B. US 3775452, 1973 [Chem. Abstr. 1969, 71, 91641].

    17. [17]

      Dioumaev, V. K.; Bullock, R. M. Nature 2000, 424, 530. 

    18. [18]

      Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. Science 2002, 298, 204.

    19. [19]

      Pagliaro, M.; Ciriminna, R.; Pandarus, V.; Béland, F. Eur. J. Org. Chem. 2013, 2013, 6227.

    20. [20]

      Jiménez, R.; Martínez-Rosales, J. M.; Cervantes, J. Can. J. Chem. 2003, 81, 1370.

    21. [21]

      Caporusso, A. M.; Aronica, L. A.; Schiavi, E.; Martra, G.; Vitulli, G.; Salvadori, P. J. Organomet. Chem. 2005, 690, 1063. 

    22. [22]

      Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.; Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M. Organometallics 2008, 27, 6495.

    23. [23]

      Shih, H.; Williams, D.; Mack, N. H.; Wang, H. Macromolecules 2008, 42, 14.

    24. [24]

      Bai, Y.; Peng, J. J.; Hu, Y. Q.; Li, J. Y.; Lai, G. Q. J. Fluorine Chem. 2011, 132, 123. 

    25. [25]

      Bandari, R.; Buchmeiser, M. R. Catal. Sci. Technol. 2012, 2, 220. 

    26. [26]

      Yermakov, Y. I.; Kuznetsov, B. N.; Zakharov, V. A. Catalysis by Supported Complexes, Vol. 8, Elsevier, Amsterdam, 1981, pp. 1~58.

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

      Chauhan, M.; Hauck, B. J.; Keller, L. P.; Boudjouk, P. J. Organomet. Chem. 2002, 645, 1. 

    32. [32]

      Marciniec, B.; Maciejewski, H.; Duczmal, W.; Fiedorow, R.; Kityński, D. Appl. Organomet. Chem. 2003, 17, 127. 

    33. [33]

    34. [34]

    35. [35]

    36. [36]

      Dongil, A. B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. J. Catal. 2011, 282, 299. 

    37. [37]

      Dongil, A. B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Catal. Commun. 2012, 26, 149.

    38. [38]

      Hu, Z.; Liu, C. B. J. Polym. Res. 2013, 20, 1.

    39. [39]

      Zhao, Y. F.; Zhang, H. Y.; Huang, C. L.; Chen, S.; Yu, B.; Xu, J. L.; Liu, Z. M. Sci. China Chem. 2013, 56, 203.

    40. [40]

      Mungse, H. P.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. P. J. Mater. Chem. 2012, 22, 5427. 

    41. [41]

      Li, Z. F.; Wu, S. J.; Ding, H.; Zheng, D. F.; Hu, J.; Wang, X.; Huo, Q.; Guan, J.; Kan, Q. New J. Chem. 2013, 37, 1561.

    42. [42]

      Rao, F. Y.; Deng, S. J.; Chen, C.; Zhang, N. Catal. Commun. 2014, 46, 1.

    43. [43]

    44. [44]

    45. [45]

      Funck, A.; Kaminsky, W. Compos. Sci. Technol. 2007, 67, 906.

    46. [46]

      Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem., Int. Ed. 2013, 52, 371. 

    47. [47]

    48. [48]

    49. [49]

    50. [50]

      Zarei, A. Tetrahedron Lett. 2012, 53, 5176. 

    51. [51]

      Chandrachood, P.; Gadkari, T.; Deshpande, N.; Kashalkar, R. J. Iran. Chem. Soc. 2012, 9, 47-51. 

    52. [52]

      Zupp, L. R.; Campanella, V. L.; Rudzinski, D. M.; Beland, F.; Priefer, R. Tetrahedron Lett. 2012, 53, 5343. 

    53. [53]

      Mahmoodi, N. O.; Heirati, S. Z. D.; Ekhlasi-Kazaj, K. J. Iran. Chem. Soc. 2012, 9, 521. 

    54. [54]

      Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. ACS Catal. 2012, 2, 2537. 

    55. [55]

      Okamoto, M.; Kiya, H.; Yamashita, H.; Suzuki, E. Chem. Commun. 2002, 1634.

    56. [56]

      Okamoto, M.; Kiya, H.; Matsumura, A.; Suzuki, E. Catal. Lett. 2008, 123, 72.

    57. [57]

      Afanasev, D. S.; Yakovina, O. A.; Kuznetsova, N. I.; Lisitsyn, A. S. Catal. Commun. 2012, 22, 43. 

    58. [58]

      Franco, C. A.; Montoya, T.; Nassar, N. N.; Pereira-Almao, P.; Cortés, F. B. Energy Fuels 2013, 27, 7336. 

    59. [59]

      Li, J.; Yang, C. H.; Zhang, L.; Ma, T. L. J. Organomet. Chem. 2011, 696, 1845. 

    60. [60]

      Liu, G.; Huang, B.; Cai, M. Z. React. Funct. Polym. 2007, 67, 294. 

    61. [61]

    62. [62]

      Huang, S.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2011, 102, 71. 

    63. [63]

      Djeddi, A.; Fechete, I.; Garin, F. Top. Catal. 2012, 55, 700.

    64. [64]

      Su, R.; Tiruvalam, R.; Logsdail, A. J.; He, Q.; Downing, C. A.; Jensen, M. T.; Dimitratos, N.; Kesavan, L.; Wells, P. P.; Bechstein, R. ACS Nano 2014, 8, 3490. 

    65. [65]

      Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.;Sepúlveda-Escribano, A.; Yus, M. J. Organomet. Chem. 2011, 696, 368. 

    66. [66]

      Alonso, F.; Buitrago, R.; Moglie, Y.; Sepúlveda-Escribano, A.; Yus, M. Organometallics 2012, 31, 2336.

    67. [67]

      Selvamani, T.; Yagyu, T.; Kawasaki, S.; Mukhopadhyay, I. Catal. Commun. 2010, 11, 537.

    68. [68]

      Zhang, Y. F.; Ma, M. Z.; Zhang, X. Y.; Wang, B. A.; Liu, R. P. J. Alloys Compd. 2014, 590, 373. 

    69. [69]

      Kaluža, L.; Gulková, D.; Vít, Z.; Zdražil, M. Appl. Catal. B-Environ. 2015, 162, 430. 

    70. [70]

    71. [71]

      Jiménez, R.; López, J. M.; Cervantes, J. Can. J. Chem. 2000, 78, 1491.

    72. [72]

      Ramírez-Oliva, E.; Hernández, A.; Martínez-Rosales, J. M. ARKIVOC 2006, 126.

    73. [73]

      Xu, H. J.; Wan, X.; Shen, Y. Y.; Xu, S.; Feng, Y. S. Org. Lett. 2012, 14, 1210. 

    74. [74]

      Xu, L.; Wang, J. Environ. Sci. Technol. 2012, 46, 10145. 

    75. [75]

      Baykal, A.; Karaoglu, E.; Sözeri, H.; Uysal, E.; Toprak, M. S. J. Supercond. Novel Magn. 2013, 26, 165. 

    76. [76]

      Cano, R.; Yus, M.; Ramón, D. J. ACS Catal. 2012, 2, 1070. 

    77. [77]

      Huang, Z.; Shi, Y.; Wen, R.; Guo, Y. H.; Su, J. F.; Matsuura, T. Sep. Purif. Technol. 2006, 51, 126. 

    78. [78]

      Chen, F.; Li, Y.; Cai, W. D.; Zhang, J. L. J. Hazard. Mater. 2010, 177, 743. 

    79. [79]

    80. [80]

    81. [81]

      Mastalir, A.; Rác, B.; Király, Z.; Molnár, Á. J. Mol. Catal. A: Chem. 2007, 264, 170.

    82. [82]

      Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Chem. Eng. J. 2012, 207, 103.

    83. [83]

      Wang, N.; Yu, X. P.; Wang, Y.; Chu, W.; Liu, M. Catal. Today. 2013, 212, 98. 

    84. [84]

      Lovell, E.; Jiang, Y.; Scott, J.; Wang, F.; Suhardja, Y.; Chen, M.; Huang, J.; Amal, R. Appl. Catal. A-Gen. 2014, 473, 51. 

    85. [85]

      Guan, Q. X.; Wan, F. F.; Han, F.; Liu, Z. H.; Li, W. Catal. Today 2016, 259, 467. 

    86. [86]

      Wu, H. Y.; Zhang, X. L.; Chen, X.; Chen, Y.; Zheng, X. C. J. Solid State Chem. 2014, 211, 51. 

    87. [87]

    88. [88]

      Zhang, H. A.; Liu, J. Q.; Cheng, S. J.; Cai, M. Z. J. Chem. Res. 2012, 36, 241. 

    89. [89]

      Hu, R. H.; Zha, L. F.; Cai, M. Z. Catal. Commun. 2010, 11, 563. 

    90. [90]

      Zha, L. F.; Hao, W. Y.; Cai, M. Z. J. Chem. Res. 2010, 34, 648. 

    91. [91]

      Ye, Z.; Shi, H.; Shen, H. Phosphorus Sulfur. 2015, 190, 1621. 

    92. [92]

    93. [93]

    94. [94]

    95. [95]

    96. [96]

    97. [97]

      Miao, Q. J.; Fang, Z. P.; Cai, G. P. Catal. Commun. 2003, 4, 637. 

    98. [98]

      Fang, Z. P.; Yang, H. T.; Miao, Q. J.; Cai, G. P. Chin. Chem. Lett. 2006, 17, 1155.

    99. [99]

      Yang, H. T.; Fang, Z. P.; Fu, X. Y.; Tong, L. F. Chin. J. Catal. 2007, 28, 947. 

    100. [100]

      Yang, H. T.; Fang, Z. P.; Fu, X. Y.; Tong, L. F. Catal. Commun. 2008, 9, 1092. 

    101. [101]

    102. [102]

    103. [103]

    104. [104]

    105. [105]

      Zhang, D. H.; Huo, W. J.; Wang, J.; Li, T. C.; Cheng, X. J.; Li, J. L.; Zhang, A. Q. J. Appl. Polym. Sci. 2012, 126, 1580. 

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

Metrics
  • PDF Downloads(0)
  • Abstract views(1999)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return