Citation:
	            
		            Hou  Shuhua, Qu  Zhongguo, Zhong  Keli, Bian  Yanjiang, Tang  Lijun. Recent Advances in Nicotinamide Adenine Dinucluotide (NAD+) Analogs Synthesis and Their Interactions with NAD+-Dependent Enzymes[J]. Chinese Journal of Organic Chemistry,
							;2016, 36(2): 297-305.
						
							doi:
								10.6023/cjoc201508010
						
					
				
					 
				
	        
- 
	                	Interactions between nicotiamide adenine dinucleotide (NAD+) and NAD+-dependent enzyme play a crucial role in cellular redox state, energy metabolism, catabolism, anabolism and signal transduction. The rules of interaction between NAD+ and NAD+-dependent enzyme have attracted increasing attention due to so many cellular processes are connected to NAD+. This review highlights some recent progresses in the fields of NAD+ analogs synthesis and interactions with NAD+- dependent enzyme including the synthesis of NAD+ analogs and its interactions with wild NAD+-dependent enzyme, interactions between NAD+ and mutant enzymes, interactions between NAD+ analogs and mutant enzymes.- 
								Keywords:
								
- NAD+,
- NAD+analog,
- NAD+-dependent enzyme,
- interaction
 
- 
	                	  
- 
	                	
- 
			
                    [1]
                
			[1] (a) Imai, S. Biochim. Biophy. Acta 2010, 1804(8), 1584. (b) Houtkooper, R. H.; Cantó, C.; Wanders, R. J.; Auwerx, J. Endocr. Rev. 2010, 31(2), 194. (c) Xia, W. L.; Wang, Z.; Wang, Q.; Han, J.; Zhao, C. P.; Hong, Y. Y.; Zeng, L. L.; Tang, L.; Ying, W. H. Curr. Pharm. Des. 2009, 15(1), 12. 
 
- 
			
                    [2]
                
			[2] (a) Schmeisser, K.; Mansfeld, J.; Kuhlow, D.; Weimer, S.; Priebe, S.; Heiland, I.; Birringer, M.; Groth, M.; Segref, A.; Kanfi, Y.; Price, N. L.; Schmeisser, S.; Schuster, S.; Pfeiffer, A. F. H.; Guthke, R.; Platzer, M.; Hoppe, T.; Cohen, H. Y.; Zarse, K.; Sinclair, D. A.; Ristow, M. Nat. Chem. Biol. 2013, 9(11), 693. (b) Imai, S.; Guarente, L. Trends Cell Biol. 2014, 24(8), 464. (c) Dudev, T.; Lim, C. J. Am. Chem. Soc. 2010, 132(46), 16533. 
 
- 
			
                    [3]
                
			[3] (a) Tallis, M.; Morra, R.; Barkauskaite, E.; Ahel, I. Chromosoma 2014, 123(1~2), 79. (b) Scobie, K. N.; Damez-Werno, D.; Sun, H. S.; Shao, N. Y.; Gancarz, A.; Panganiban, C. H.; Dias, C.; Koo, J.; Caiafa, P.; Kaufman, L.; Neve, R. L.; Dietz, D. M.; Shen, L.; Nestler, E. J. Proc. Natl. Acad. Sci. U. S. A. 2014, 111(5), 2005. (c) Jiang, H.; Kim, J. H.; Frizzell, K. M.; Kraus, W. L.; Lin, H. J. Am. Chem. Soc. 2010, 132(27), 9363 
 
- 
			
                    [4]
                
			[4] Graeff, R.; Liu, Q.; Kriksunov, I. A.; Kotaka, M.; Oppenheimer, N.; Hao, Q.; Lee, H. C. J. Biol. Chem. 2009, 284(40), 27629. 
 
- 
			
                    [5]
                
			[5] Giangreco, I.; Packer, M. J. J. Med. Chem. 2013, 56(15), 6175. 
 
- 
			
                    [6]
                
			[6] Leonard, N. J.; Laursen, R. A. Biochemistry (Mosc.) 1965, 4(2), 365. 
 
- 
			
                    [7]
                
			[7] (a) Windműeller, H.; Kaplan, N. J. Biol. Chem. 1961, 236(10), 2716. (b) Woenckhaus, C.; Koob, R.; Burkhard, A.; Schaefer, H. G. Bioorg. Chem. 1983, 12(1), 45. 
 
- 
			
                    [8]
                
			[8] Koberstein, R. Eur. J. Biochem. 1976, 67(1), 223. 
 
- 
			
                    [9]
                
			[9] Pergolizzi, G.; Butt, J. N.; Bowater, R. P.; Wagner, G. K. Chem. Commun. 2011, 47(47), 12655. 
 
- 
			
                    [10]
                
			[10] Wang, S.; Zhu, W.; Wang, X.; Li, J.; Zhang, K.; Zhang, L.; Zhao, Y.-J.; Lee, H. C.; Zhang, L. Molecules 2014, 19(10), 15754. 
 
- 
			
                    [11]
                
			[11] Jiang, H.; Kim, J. H.; Frizzell, K. M.; Kraus, W. L.; Lin, H. J. Am. Chem. Soc. 2010, 132(27), 9363. 
 
- 
			
                    [12]
                
			[12] Hou, S. H.; Liu, W. J.; Zhao, Z. B. Chin. J. Org. Chem. 2012, 32, 349 (in Chinese). (侯淑华, 刘武军, 赵宗保, 有机化学 2012, 32(2), 349.) 
 
- 
			
                    [13]
                
			[13] Hou, S.; Liu, W.; Ji, D.; Wang, Q.; Zhao, Z. K. Tetrahedron Lett. 2011, 52(44), 5855. 
 
- 
			
                    [14]
                
			[14] (a) Ji, D.; Wang, L.; Hou, S.; Liu, W.; Wang, J.; Wang, Q.; Zhao, Z. K. J. Am. Chem. Soc. 2011, 133(51), 20857. (b) Ji, D.; Wang, L.; Liu, W.; Hou, S.; Zhao, K. Z. Sci. China Chem. 2013, 56(3), 296. 
 
- 
			
                    [15]
                
			[15] (a) Imai, T.; Okuda, S.; Suzuki, S. J. Biol. Chem. 1969, 244(17), 4547. (b) Suhadolnik, R. J.; Lennon, M. B.; Uematsu, T.; Monahan, J. E.; Baur, R. J. Biol. Chem. 1977, 252(12), 4125. 
 
- 
			
                    [16]
                
			[16] Wang, Y.; Roesner, D.; Grzywa, M.; Marx, A. Angew. Chem., Int. Ed. 2014, 53(31), 8159. 
 
- 
			
                    [17]
                
			[17] Pfleiderer, G.; Sann, E.; Stock, A. Chem. Ber. 1960, 93(12), 3083. 
 
- 
			
                    [18]
                
			[18] Liu, W.; Wu, S.; Hou, S.; Zhao, Z. K. Tetrahedron 2009, 65(40), 8378. 
 
- 
			
                    [19]
                
			[19] Zhang, H. M.; Graeff, R.; Chen, Z.; Zhang, L. R.; Zhang, L. H.; Lee, H. C.; Hao, Q. A. J. Mol. Biol. 2011, 405(4), 1070. 
 
- 
			
                    [20]
                
			[20] Egea, P. F.; Muller-Steffner, H.; Kuhn, I.; Cakir-Kiefer, C.; Oppenheimer, N. J.; Stroud, R. M.; Kellenberger, E.; Schuber, F. PLoS One 2012, 7(4), e34918. 
 
- 
			
                    [21]
                
			[21] Chang, G. G.; Tong, L. Biochemistry (Mosc.) 2003, 42(44), 12721. 
 
- 
			
                    [22]
                
			[22] Coleman, D. E.; Rao, G. S. J.; Goldsmith, E.; Cook, P. F.; Harris, B. G. Biochemistry (Mosc.) 2002, 41(22), 6928. 
 
- 
			
                    [23]
                
			[23] Mahmud, A.; Hattori, K.; Hongwen, C.; Kitamoto, N.; Suzuki, T.; Nakamura, K.; Takamizawa, K. Biotechnol. Lett. 2013, 35(5), 769. 
 
- 
			
                    [24]
                
			[24] Aktas, D. F.; Cook, P. F. Biochim. Biophys. Acta 2008, 1784(12), 2059. 
 
- 
			
                    [25]
                
			[25] Peregrina, J. R.; Herguedas, B.; Hermoso, J. A.; Martinez-Julvez, M.; Medina, M. Biochemistry (Mosc.) 2009, 48(14), 3109. 
 
- 
			
                    [26]
                
			[26] Woodyer, R.; van der Donk, W. A.; Zhao, H. M. Biochemistry (Mosc.) 2003, 42(40), 11604. 
 
- 
			
                    [27]
                
			[27] Kuhn, I.; Kellenberger, E.; Cakir-Kiefer, C.; Muller-Steffner, H.; Schuber, F. Biochim. Biophy. Acta 2014, 1844(7), 1317. 
 
- 
			
                    [28]
                
			[28] Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44(9), 666. 
 
- 
			
                    [29]
                
			[29] Chockalingam, K.; Zhao, H. Trends Biotechnol. 2005, 23(7), 333. 
 
- 
			
                    [30]
                
			[30] (a) Miyazaki, Y.; Imoto, H.; Chen, L.-C.; Wandless, T. J. J. Am. Chem. Soc. 2012, 134(9), 3942. (b) Zhang, Y.; Chen, P.; Yao, Z. J. Chin. Sci. Bull. 2013, 58, 2872 (in Chinese). (张艳, 陈鹏, 姚祝军, 科学通报, 2013, 58, 2872.) (c) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48(38), 6974. 
 
- 
			
                    [31]
                
			[31] Wang, J.; Zhang, S.; Tan, H.; Zhao, Z. J. Microbiol. Methods 2007, 71(3), 225. 
 
- 
			
                    [32]
                
			[32] Hou, S.; Ji, D.; Liu, W.; Wang, L.; Zhao, Z. K. Bioorg. Med. Chem. Lett. 2014, 24, 1307. 
 
 
- 
			
                    [1]
                
			
- 
	                	
						  
- 
	                	
- 
				[1]
				Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459 
- 
				[2]
				Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027 
- 
				[3]
				Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258 
- 
				[4]
				Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098 
- 
				[5]
				Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004 
- 
				[6]
				Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100 
- 
				[7]
				Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011 
- 
				[8]
				Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192 
- 
				[9]
				Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054 
- 
				[10]
				Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104 
- 
				[11]
				Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021 
- 
				[12]
				Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057 
- 
				[13]
				Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050 
- 
				[14]
				Wenke ZHENG , Ce LIU , Wei CHEN , Hongshan KE , Fanlong ZENG , Yibo LEI , Anyang LI , Wenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095 
- 
				[15]
				Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056 
- 
				[16]
				Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058 
- 
				[17]
				Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111 
- 
				[18]
				Meng-Yin Wang , Ruo-Bei Huang , Jian-Feng Xiong , Jing-Hua Tian , Jian-Feng Li , Zhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017 
- 
				[19]
				Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095 
- 
				[20]
				Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021 
 
- 
				[1]
				
Metrics
- PDF Downloads(1)
- Abstract views(1323)
- HTML views(157)
 
  Login In
Login In
 
	                     
	                     
	                     
	                     DownLoad:
DownLoad: