Citation: Li Qinghan, Ding Yong, Zhang Gang, Zhang Zhen, Mo Song. Advance on Applications of Microwave Technique in Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction[J]. Chinese Journal of Organic Chemistry, ;2015, 36(1): 83-104. doi: 10.6023/cjoc201507008 shu

Advance on Applications of Microwave Technique in Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction

  • Corresponding author: Li Qinghan, lqhchem@163.com
  • Received Date: 12 July 2015
    Revised Date: 24 August 2015

    Fund Project: the Science and Technology Department of Sichuan Province 2015NZ0033the Fundamental Research Funds for the Central Universities, Southwest University for Nationalities 12NZYTH03

Figures(15)

  • Compared with conventional heating, microwave heating is one of the most useful tools in organic synthesis because of its obviously advantages of fast heating, thermal efficiency, saving energy, clean, and easy operation. Palladium catalyzed Suzuki-Miyaura cross-coupling reaction could tolerate a broad range of functional groups with high stereoselectivity to provide a mild method in preparation of kinds of substituted biaryls. In this paper, the recent research results about the microwave technique applied in Suzuki-Miyaura cross-coupling reaction are reviewed, involving various reaction systems. The applications of the methodology on the synthesis of natural products and bioactive molecules have also been introduced.
  • 加载中
    1. [1]

      Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
      (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
      (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (d) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
      (e) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
      (f) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
      (g) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
      (h) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419.
      (i) Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366.
      (j) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047.
      (k) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, Vol. 2, Wiley-VCH, Weinheim, 2004.
      (l) Ackermann, L. Modern Arylation Methods, Wiley-VCH, Weinheim, 2009.
      (m) Shen, X.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 11278.
      (n) Lundin, P. M.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11027.
      (o) Li, W.-Y.; Zhao, D.-M.; Xiong, X. Q.; Ma, Q. Q.; Cheng, M. S. Chin. J. Org. Chem. 2011, 31, 784 (in Chinese).
      李文燕, 赵冬梅, 熊绪琼, 马倩倩, 程卯生, 有机化学, 2011, 31, 784.
      (p) Li, Q. H.; Ding, Y.; Yang, X. J. Chin. Chem. Lett. 2014, 25, 1296.
      (q) Li, Q. H.; Ding, Y.; Huang, N. W. Chin. Chem. Lett. 2014, 25(11), 1469.

    2. [2]

      Xu, G. Q.; Zhao, Q.; Tang, W. J. Chin. J. Org. Chem. 2014, 34, 1919 (in Chinese).  doi: 10.6023/cjoc201406030
       

    3. [3]

      Zhao, X. W.; Cui, Y. C. Prog. Chem. 2006, 18, 1652 (in Chinese).

    4. [4]

      Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419.

    5. [5]

      For a discussion, see
      (a) Grushin, V. V.; Alper, H. In Activation of Unreactive Bonds and Organic Synthesis, Ed.: Murai, S., Springer, Berlin, 1999, p. 193.
      (b) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047.

    6. [6]

      Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem 2010, 3, 502.  doi: 10.1002/cssc.v3:5

    7. [7]

      Fihri, A.; Meunier, P.; Hierso, J. C. Coord. Chem. Rev. 2007, 251, 2017.  doi: 10.1016/j.ccr.2007.03.020

    8. [8]

      Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.  doi: 10.1002/anie.v48:52

    9. [9]

      Liu, L.; Liu, C.; Jin, M. Z. Chin. J. Org. Chem. 2012, 32, 860 (in Chinese).  doi: 10.6023/cjoc1109052
       

    10. [10]

      Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279.  doi: 10.1016/S0040-4039(00)83996-9

    11. [11]

      Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27(41), 4945.  doi: 10.1016/S0040-4039(00)85103-5

    12. [12]

      Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Leadbeater, N. E. Chem. Commun. 2005, 23, 2881.

    14. [14]

      Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563.  doi: 10.1021/cr0509410

    15. [15]

      Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582.  doi: 10.1021/jo9612990

    16. [16]

      Blettner. C. G.; König, W. A.; Stenzel, W.; Schotten, T. J. Org. Chem. 1999, 64(11), 3885.  doi: 10.1021/jo982135h

    17. [17]

      Namboodiri, V. V.; Varma, R. S. Green Chem. 2001, 3(3), 146.  doi: 10.1039/b102337n

    18. [18]

      Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973.  doi: 10.1021/ol0263907

    19. [19]

      Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68, 888.  doi: 10.1021/jo0264022

    20. [20]

      Leadbeater, N. E.; Williams, V. A.; Barnard, T. M.; Collins Jr, M. J. Org. Process Res. Dev. 2006, 10, 833.  doi: 10.1021/op0600613

    21. [21]

      Bedford, R. B.; Buts, C. P.; Hurst, T. E.; Lidström, P. Adv. Synth. Catal. 2004, 346, 1627.  doi: 10.1002/adsc.200404144

    22. [22]

      Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Genov, M.; Almorín, A.; Espinet, P. Tetrahedron: Asymmetry 2007, 18, 625.  doi: 10.1016/j.tetasy.2007.03.001

    24. [24]

      Zhang, Y. Q. J. Chem. Res. 2013, 375.

    25. [25]

      Kabalka, G. W.; Pagni, R. M.; Wang, L.; Namboodiri, V.; Hair, C. M. Green Chem. 2000, 3, 120.

    26. [26]

      Kabalka, G. W.; Wang, L.; Pagni, R. M.; Maxwell, H. C.; Vasudevan, N. Synthesis 2003, 217.

    27. [27]

      Villemin, D.; Caillot, F. Tetrahedron Lett. 2001, 42, 639.  doi: 10.1016/S0040-4039(00)02027-X

    28. [28]

      Basu, B.; Das, P.; Bhuiyan, M. M. H.; Jha, S. Tetrahedron Lett. 2003, 44(19), 3817.  doi: 10.1016/S0040-4039(03)00731-7

    29. [29]

      Melucci, M.; Barbarella, G.; Sotgiu, G. J. Org. Chem. 2002, 67, 8877.  doi: 10.1021/jo026269d

    30. [30]

      Sotgiu, G.; Zambianchi, M.; Barbarella, G.; Botta, C. Tetrahedron 2002, 58, 2245.  doi: 10.1016/S0040-4020(02)00098-4

    31. [31]

      Melucci, M.; Barbarella, G.; Zambianchi, M.; Pietro, P. D.; Bongini, A. J. Org. Chem. 2004, 69, 4821.  doi: 10.1021/jo035723q

    32. [32]

      Saha, P.; Naskar, S.; Paira, P.; Hazra, A.; Sahu, K. B.; Paira, R.; Banerjee, S.; Mondal, N. B. Green Chem. 2009, 11, 931.  doi: 10.1039/b902916h

    33. [33]

      Cargill, M. R.; Sandford, G.; Tadeusiak, A. J.; Yufit, D. S.; Howard, J. A. K.; Kilickiran, P.; Nelles, G. J. Org. Chem. 2010, 75, 5860.  doi: 10.1021/jo100877j

    34. [34]

      Gao, F. F.; Liu, F. J.; Lin, C.; Li, W. T.; Wang, S. G.; Qi, C. Z. Catal. Commun. 2013, 5, 27.

    35. [35]

      Wang, Y.; Sauer, D. R. Org. Lett. 2004, 6, 2793.  doi: 10.1021/ol048972p

    36. [36]

      Bai, L.; Zhang, Y. M.; Wang, J. X. QSAR Comb. Sci. 2004, 23, 875.  doi: 10.1002/(ISSN)1611-0218

    37. [37]

      Liu, Y. B.; Khemtong, C.; Hu, J. Chem. Commun. 2004, 398.

    38. [38]

      Hu, J.; Liu, Y. B. Langmuir 2005, 21, 2121.  doi: 10.1021/la0471902

    39. [39]

      Sharma, A. K.; Gowdahalli, K.; Krzeminski, J.; Amin, S. J. Org. Chem. 2007, 72, 8987.  doi: 10.1021/jo701665j

    40. [40]

      De Souza, A. L. F.; Da Silva, L. C.; Oliveira, B. L.; Antunes, O. A. C. Tetrahedron Lett. 2008, 49, 3895.  doi: 10.1016/j.tetlet.2008.04.061

    41. [41]

      Moussa, S.; Siamaki, A. R.; Gupton, B. F.; El-Shall, M. S. ACS Catal. 2012, 2, 145.  doi: 10.1021/cs200497e

    42. [42]

      Camp, J. E.; Dunsford, J. J.; Cannons, E. P.; Restorick, W. J.; Gadzhieva, A.; Fay, M. W.; Smith, R. J. ACS Sustainable Chem. Eng. 2014, 2, 500.  doi: 10.1021/sc400410v

    43. [43]

      Gómez-Martínez, M.; Buxaderas, E.; Pastor, I. M.; Alonso, D. A. J. Mol. Catal. A: Chem. 2015, 404~405, 1.

    44. [44]

      Heidenreich, R. G.; Köhler, K.; Krauter, J. G. E.; Pietsch, J. Synlett 2002, 7, 1118.

    45. [45]

      Lu, G.; Franzén, R.; Zhang, Q.; Xu, Y. J. Tetrahedron Lett. 2005, 46, 4255.  doi: 10.1016/j.tetlet.2005.04.022

    46. [46]

      Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101.  doi: 10.1021/ol0503384

    47. [47]

      Schmidt, B.; Riemer, M.; Karras, M. J. Org. Chem. 2013, 78, 8680.  doi: 10.1021/jo401398n

    48. [48]

      Schmidt, B.; Riemer, M. J. Org. Chem. 2014, 79, 4104.  doi: 10.1021/jo500675a

    49. [49]

      Schmidt, B.; Riemer, M. Eur. J. Org. Chem. 2015, 17, 3760.

    50. [50]

      Al-Amin, M.; Akimoto, M.; Tameno, T.; Ohki, Y.; Takahashi, N.; Hoshiya, N.; Shuto, S.; Arisawa, M. Green Chem. 2013, 15, 1142.  doi: 10.1039/c3gc00063j

    51. [51]

      Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69, 3173.  doi: 10.1021/jo035834p

    52. [52]

      Nun, P.; Martinez, J.; Lamaty, F. Synlett 2009, 1761.

    53. [53]

      Yılmaz, Ü.; Küçükbay, H.; Şireci, N.; Akkurt, M.; Günal, S.; Durmaz, R.; Tahir, M. N. Appl. Organomet. Chem. 2011, 25, 366.  doi: 10.1002/aoc.v25.5

    54. [54]

      Miao, G. B.; Ye, P.; Yu, L. B.; Baldino, C. M. J. Org. Chem. 2005, 70, 2332.  doi: 10.1021/jo047975c

    55. [55]

      Solodenko, W.; Schön, U.; Messinger, J.; Glinschert, A.; Kirschning, A. Synlett 2004, 1699.

    56. [56]

      Kopylovich, M. N.; Lasri, J.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Dalton Trans. 2009, 16, 3074.

    57. [57]

      Cívicos, J. F.; Alonso, D. A.; Nájera, C. Adv. Synth. Catal. 2011, 353, 1683.  doi: 10.1002/adsc.201100019

    58. [58]

      Dawood, K. M. Tetrahedron 2007, 63, 9642.  doi: 10.1016/j.tet.2007.07.029

    59. [59]

      Kostas, I. D.; Heropoulos, G. A.; Kovala-Demertzi, D.; Yadav, P. N.; Jasinski, J. P.; Demertzis, M. A.; Andreadaki, F. J.; Vo-Thanh, G.; Petit, A.; Loupy, A. Tetrahedron Lett. 2006, 47, 4403.  doi: 10.1016/j.tetlet.2006.04.088

    60. [60]

      Villemin, D.; Escalonilla, M. J. G.; Saint-Clair, J. F. Tetrahedron Lett. 2001, 42(4), 635.  doi: 10.1016/S0040-4039(00)02026-8

    61. [61]

      Qu, G. R.; Xin, P. Y.; Niu, H. Y.; Jin, X.; Guo, X. T.; Yang, X. N.; Guo, H. M. Tetrahedron 2011, 67, 9099.  doi: 10.1016/j.tet.2011.09.082

    62. [62]

      Zhang, W.; Chen, C. H. T.; Lu, Y. M.; Nagashima, T. Org. Lett. 2004, 6, 1473.  doi: 10.1021/ol0496428

    63. [63]

      Cívicos, J. F.; Alonso, D. A.; Nájera, C. Adv. Synth. Catal. 2012, 354, 2771.  doi: 10.1002/adsc.v354.14/15

    64. [64]

      Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 1137.  doi: 10.1021/jo035309q

    65. [65]

      Seganish, W. M.; DeShong, P. Org. Lett. 2004, 6, 4379.  doi: 10.1021/ol048044q

    66. [66]

      Hadebe, S. W.; Sithebe, S.; Robinson, R. S. Tetrahedron 2011, 67, 4277.  doi: 10.1016/j.tet.2011.03.095

    67. [67]

      Kabalka, G. W.; Al Masum, M. Tetrahedron Lett. 2005, 46, 6329.  doi: 10.1016/j.tetlet.2005.07.036

    68. [68]

      Arvela, R. K.; Leadbeater, N. E.; Mack, T. L.; Kormos, C. M. Tetrahedron Lett. 2006, 47, 217.  doi: 10.1016/j.tetlet.2005.10.153

    69. [69]

      Kabalka, G. W.; Zhou, L. L.; Naravane, A. Tetrahedron Lett. 2006, 47, 6887.  doi: 10.1016/j.tetlet.2006.07.042

    70. [70]

      Harker, R. L.; Crouch, R. D. Synthesis 2007, 25.

    71. [71]

      Ahn, H. R.; Cho, Y. A.; Kim, D. S.; Chin, J. G.; Gyoung, Y. S.; Lee, S.; Kang, H.; Ham, J. Org. Lett. 2009, 11, 361.  doi: 10.1021/ol8025999

    72. [72]

      Kim, D. S.; Ham, J. Org. Lett. 2010, 12, 1092.  doi: 10.1021/ol100081v

    73. [73]

      Nehls, B. S.; Asawapirom, U.; Füldner, S.; Preis, E.; Farrell, T.; Scherf, U. Adv. Funct. Mater. 2004, 14, 352.  doi: 10.1002/(ISSN)1616-3028

    74. [74]

      Nehls, B. S.; Fldner, S.; Preis, E.; Farrell, T.; Scherf, U. Macromolecules 2005, 38, 687.  doi: 10.1021/ma048595w

    75. [75]

      Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864.  doi: 10.1021/jo0502549

    76. [76]

      Hashim, J.; Glasnov, T. N.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 1707.  doi: 10.1021/jo052283p

    77. [77]

      Mathews, C. J.; Taylor, J.; Tyte, M. J.; Worthington, P. A. Synlett 2005, 538.

    78. [78]

      Song, Y. S.; Kim, B. T.; Heo, J. N. Tetrahedron Lett. 2005, 46, 5987.  doi: 10.1016/j.tetlet.2005.07.027

    79. [79]

      Song, Y. S.; Lee, Y. J.; Kim, B. T.; Heo, J. N. Tetrahedron Lett. 2006, 47, 7427.  doi: 10.1016/j.tetlet.2006.08.052

    80. [80]

      Heo, Y.; Song, Y. S.; Kim, B. T.; Heo, J. N. Tetrahedron Lett. 2006, 47, 3091.  doi: 10.1016/j.tetlet.2006.02.152

    81. [81]

      Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. J. Org. Chem. 2008, 73, 2886.  doi: 10.1021/jo800088y

    82. [82]

      Cao, P.; Qu, J. Y.; Burton, G.; Rivero, R. A. J. Org. Chem. 2008, 73, 7204.  doi: 10.1021/jo801097v

    83. [83]

      Crozet, M. D.; Zink, L.; Remusat, V.; Curti, C.; Vanelle, P. Synthesis 2009, 3150.

    84. [84]

      Cohen, A.; Crozet, M. D.; Rathelot, P.; Vanelle, P. Green Chem. 2009, 11, 1736.  doi: 10.1039/b916123f

    85. [85]

      St. Jean, Jr., D. J.; Poon, S. F.; Schwarzbach, J. L. Org. Lett. 2007, 9, 4893.  doi: 10.1021/ol702274y

    86. [86]

      Vishnumurthy, K.; Makriyannis, A. J. Comb. Chem. 2010, 12, 664.  doi: 10.1021/cc100068a

    87. [87]

      Kabri, Y.; Gellis, A.; Vanelle, P. Eur. J. Org. Chem. 2009, 4059.

    88. [88]

      Kabri, Y.; Crozet, M. D.; Terme, T.; Vanelle, P. Eur. J. Org. Chem. 2015, 3806.

    89. [89]

      Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Org. Lett. 2005, 7, 2723.  doi: 10.1021/ol050806+

    90. [90]

      Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Chem. Eur. J. 2007, 13, 6452.  doi: 10.1002/(ISSN)1521-3765

    91. [91]

      Lépine, R.; Zhu, J. Org. Lett. 2005, 7, 2981.  doi: 10.1021/ol050949w

    92. [92]

      Wannberg, J.; Sabnis, Y. A.; Vrang, L.; Samuelsson, B.; Karlén, A.; Hallberg, A.; Larhed, M. Bioorg. Med. Chem. 2006, 14, 5303.  doi: 10.1016/j.bmc.2006.03.045

    93. [93]

      Ng-Choi, I.; Soler, M.; Cerezo, V.; Badosa, E.; Montesinos, E.; Planas, M.; Feliu, L. Eur. J. Org. Chem. 2012, 4321.

    94. [94]

      Benali, O.; Deal, M.; Farrant, E.; Tapolczay, D.; Wheeler, R. Org. Process Res. Dev. 2008, 12, 1007.  doi: 10.1021/op700225u

    95. [95]

      De Clercq, E. Nat. Rev. Drug Discovery2002, 1, 13.  doi: 10.1038/nrd703

    96. [96]

      De Clercq, E. Antiviral Res. 2005, 67, 56.  doi: 10.1016/j.antiviral.2005.05.001

    97. [97]

      Capek, P.; Pohl, R.; Hocek, M. Org. Biomol. Chem. 2006, 4, 2278.  doi: 10.1039/B604010A

    98. [98]

      Western, E. C.; Shaughnessy, K. H. J. Org. Chem. 2005, 70, 6378.  doi: 10.1021/jo050832l

    99. [99]

      Western, E. C.; Daft, J. F.; Johnson, E. M.; Gannett, P. M.; Shaughnessy, K. H. J. Org. Chem. 2003, 68, 6767.  doi: 10.1021/jo034289p

    100. [100]

      Zhu, R.; Qu, F.; Quéléver, G.; Peng, L. Tetrahedron Lett. 2007, 48, 2389.  doi: 10.1016/j.tetlet.2007.01.154

    101. [101]

      Gallagher-Duval, S.; Hervé, G.; Sartori, G.; Enderlin, G.; Len, C. New J. Chem. 2013, 37, 1989.  doi: 10.1039/c3nj00174a

    102. [102]

      Lussier, T.; Hervé, G.; Enderlin, G.; Len, C. RSC Adv. 2014, 4, 46218.  doi: 10.1039/C4RA04814H

    103. [103]

      Spencer, J.; Baltus, C. B.; Patel, H.; Press, N. J.; Callear, S. K.; Male, L.; Coles. S. J. ACS Comb. Sci. 2011, 13, 24.  doi: 10.1021/co100011g

    104. [104]

      Arisawa, M.; Sato, T.; Hoshiya, N.; Al-Amin, M.; Kogami, Y.; Shuto, S. ACS Comb. Sci. 2014, 16, 215.  doi: 10.1021/co4001138

    105. [105]

      Nakagawa, K.; Hisamatsu, Y.; Moromizato, S.; Kohno, M.; Aoki, S. Inorg. Chem. 2014, 53, 409.  doi: 10.1021/ic402387b

    106. [106]

      Konda, V.; Rydfjord, J.; Sävmarker, J.; Larhed, M. Org. Process Res. Dev. 2014, 18, 1413.  doi: 10.1021/op5001989

    107. [107]

      Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 1507;
      (b)Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874;
      (c) Singh, K. B.; Appukkuttan, P.; Claerhout, S.; Parmar, V. S.; Der Eycken, E. V. Org. Lett. 2006, 8, 1863.

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    9. [9]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

Metrics
  • PDF Downloads(0)
  • Abstract views(2351)
  • HTML views(317)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return