Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst
- Corresponding author: Leilei Kang, leikang@dicp.ac.cn Xiao Yan Liu, xyliu2003@dicp.ac.cn
 
	            Citation:
	            
		            Zhuoyan Lv, Yangming Ding, Leilei Kang, Lin Li, Xiao Yan Liu, Aiqin Wang, Tao Zhang. Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst[J]. Acta Physico-Chimica Sinica,
							;2025, 41(4): 240801.
						
							doi:
								10.3866/PKU.WHXB202408015
						
					
				
					
				
	        
	                
				Khatib, S. J.; Oyama, S. T. Catal. Rev. Sci. Eng. 2015,  57, 306. doi: 10.1080/01614940.2015.1041849
												 doi: 10.1080/01614940.2015.1041849
											
										
				Teržan, J.; Huš, M.; Likozar, B.; Djinović, P. ACS Catal. 2020,  10, 13415. doi: 10.1021/acscatal.0c03340
												 doi: 10.1021/acscatal.0c03340
											
										
				Pu, T.; Setiawan, A.; Mosevitzky Lis, B.; Zhu, M.; Ford, M. E.; Rangarajan, S.; Wachs, I. E. ACS Catal. 2022,  12, 4375. doi: 10.1021/acscatal.1c05939
												 doi: 10.1021/acscatal.1c05939
											
										
				Guo, M.; Dongfang, N.; Iannuzzi, M.; van Bokhoven, J. A.; Artiglia, L. ACS Catal. 2024,  14, 10234. doi: 10.1021/acscatal.4c01566
												 doi: 10.1021/acscatal.4c01566
											
										
				Thommes, T.; Reitzmann, A.; Kraushaar-Czarnetzki, B.  Appl Catal A: Gen 2007,   318, 160. doi: 10.1016/j.apcata.2006.10.051
												 doi: 10.1016/j.apcata.2006.10.051
											
										
				Gambo, Y.; Adamu, S.; Abdulrasheed, A. A.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, M. M. Appl Catal A: Gen 2021,  609, 117914. doi: 016/j.apcata.2020.117914
										
				Haruta M.; Huang J. Res. Chem. Intermediat.  2012,  38, 1. doi: 10.1007/s11164-011-0424-6
												 doi: 10.1007/s11164-011-0424-6
											
										
				Zohour, B.; Noon, D.; Seubsai, A.; Senkan, S. Ind. Eng. Chem. Res. 2014,  53, 6243. doi: 10.1021/ie402416s
												 doi: 10.1021/ie402416s
											
										
				Su, W. G.; Wang, S. G.; Ying, P. L.; Feng, Z. C.; Li, C. J. Catal. 2009,  268, 165. doi: 10.1016/j.jcat.2009.09.017
												 doi: 10.1016/j.jcat.2009.09.017
											
										
				Zhu, W. M.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2008,  112, 7731. doi: 10.1021/jp800927y
												 doi: 10.1021/jp800927y
											
										
				Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y. Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X.; et al. J. Am. Chem. Soc. 2020,  142, 14134. doi: 10.1021/jacs.0c03882
												 doi: 10.1021/jacs.0c03882
											
										
				Qadir, M. I.; Dupont, J. Angew. Chem. Int. Ed. 2023,  62. doi: 10.1002/anie.202301497
												 doi: 10.1002/anie.202301497
											
										
				Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020,  59, 8016. doi: 10.1002/anie.201907443
												 doi: 10.1002/anie.201907443
											
										
				Fang, S.; Hu, Y. H. Chem. Soc. Rev. 2022,  51, 3609. doi: 10.1039/d1cs00782c
												 doi: 10.1039/d1cs00782c
											
										
				Pichat, P.; Herrmann, J.; Disdier, J.; Mozzanega, M. J. Phys. Chem. 1979,  83, 3122. doi: 10.1021/J100487A012
												 doi: 10.1021/J100487A012
											
										
				Tanaka, T.; Yoshida, H.; Nakagawa, H.; Funabiki, T.; Yoshida, S. Catal. Today 1993, 16, 297. doi: 10.1016/0920-5861(93)80069-D
												 doi: 10.1016/0920-5861(93)80069-D
											
										
				Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Langmuir 2004,  20, 4236. doi: 10.1021/la0496439
												 doi: 10.1021/la0496439
											
										
				Murata, C.; Yoshida, H.; Kumagai, J.; Hattori, T.  J. Phys. Chem. B 2003,  107, 4364. doi: 10.1021/jp0277006
												 doi: 10.1021/jp0277006
											
										
				Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T. J. Catal. 2003,  220, 226. doi: 10.1016/s0021-9517(03)00292-6
												 doi: 10.1016/s0021-9517(03)00292-6
											
										
				Yoshida, H.; Tanaka, T.; Yamamoto, M.; Yoshida, T.; Funabiki, T.; Yoshida, S.  J. Catal. 1997,  171, 351. doi: 10.1006/jcat.1997.1813
												 doi: 10.1006/jcat.1997.1813
											
										
				Marimuthu, A.; Zhang, J.; Linic, S. Science 2013,  339, 1590. doi: 10.1126/science.1231631
												 doi: 10.1126/science.1231631
											
										
				Lv, Z.; Kang, L.; Pan, X.; Su, Y.; Wang, H.; Li, L.; Liu, X. Y.; Wang, A.; Zhang, T. ACS Catal. 2024,  14, 10172. doi: 10.1021/acscatal.4c01749
												 doi: 10.1021/acscatal.4c01749
											
										
				Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al.  Angew. Chem. Int. Ed. 2020,  59, 12909. doi: 10.1002/anie.202001701
												 doi: 10.1002/anie.202001701
											
										
				Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2023,  40, 2303003. doi: 10.3866/PKU.WHXB202303003
												 doi: 10.3866/PKU.WHXB202303003
											
										
				Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y.;  et al. J. Am. Chem. Soc. 2021,  143, 14530. doi: 10.1021/jacs.1c03788
												 doi: 10.1021/jacs.1c03788
											
										
				Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C. -Y.; Lee, J. -F. J. Catal. 2011,  278, 288. doi: 10.1016/j.jcat.2010.12.016
												 doi: 10.1016/j.jcat.2010.12.016
											
										
				Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Ed. 2007,  46, 2055. doi: 10.1002/anie.200603803
												 doi: 10.1002/anie.200603803
											
										
				Huang, Y.; Liu, Z.; Gao, G.; Xiao, G.; Du, A.; Bottle, S.; Sarina, S.; Zhu, H. ACS Catal. 2017,  7, 4975. doi: 10.1021/acscatal.7b01180
												 doi: 10.1021/acscatal.7b01180
											
										
				Li, D.; Zhao, Y.; Miao, Y.; Zhou, C.; Zhang, L. -P.; Wu, L. -Z.; Zhang, T. Adv. Mater. 2022,  34, 2207793. doi: 10.1002/adma.202207793
												 doi: 10.1002/adma.202207793
											
										
				Hikov, T.; Schroeter, M. K.; Khodeir, L.; Chemseddine, A.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2006,  8, 1550. doi: 10.1039/b512113b
												 doi: 10.1039/b512113b
											
										
				Liu, Y.; Zhang, B.; Luo, L.; Chen, X.; Wang, Z.; Wu, E.; Su, D.; Huang, W. Angew. Chem. Int. Ed. 2015,  54, 15260. doi: 10.1002/anie.201509115
												 doi: 10.1002/anie.201509115
											
										
				Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2021,  144, 740. doi: 10.1021/jacs.1c09141
												 doi: 10.1021/jacs.1c09141
											
										
				Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y.; et al. Nat. Commun. 2022,  13, doi: 10.1038/s41467-021-27698-3
												 doi: 10.1038/s41467-021-27698-3
											
										
				Bello, I.; Chang, W. H.; Lau, W. M. J. Appl. Phys. 1994,  75, 3092. doi: 10.1063/1.356160
												 doi: 10.1063/1.356160
											
										
				Li, W.; Wu, G.; Hu, W.; Dang, J.; Wang, C.; Weng, X.; da Silva, I.; Manuel, P.; Yang, S.; Guan, N.; et al. J. Am. Chem. Soc. 2022,  144, 4260. doi: 10.1021/jacs.2c00792
												 doi: 10.1021/jacs.2c00792
											
										
				He, J. L.; Zhai, Q. G.; Zhang, Q. H.; Deng, W. P.; Wang, Y. J. Catal. 2013,  299, 53. doi: 10.1016/j.jcat.2012.11.032
												 doi: 10.1016/j.jcat.2012.11.032
											
										
				Wang, Y. N.; Ma, W. H.; Wang, D. Y.; Zhong, Q. Chem. Eng. J. 2017,  307, 1047. doi: 10.1016/j.cej.2016.09.035
												 doi: 10.1016/j.cej.2016.09.035
											
										
				Xiong, W.; Gu, X. -K.; Zhang, Z.; Chai, P.; Zang, Y.; Yu, Z.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. Nat. Commun. 2021,  12, 5921. doi: 10.1038/s41467-021-26257-0
												 doi: 10.1038/s41467-021-26257-0
											
										
				Wang, A.; Zhang, L.; Yu, Z.; Zhang, S.; Li, L.; Ren, Y.; Yang, J.; Liu, X.; Liu, W.; Yang, X.; et al. J. Am. Chem. Soc. 2023,  146, 695. doi: 10.1021/jacs.3c10551
												 doi: 10.1021/jacs.3c10551
											
										
				Huang, M.; Zhang, S.; Wu, B.; Wei, Y.; Yu, X.; Gan, Y.; Lin, T.; Yu, F.; Sun, F.; Jiang, Z.; et al. ACS Catal. 2022,  12, 9515. doi: 10.1021/acscatal.2c02424
												 doi: 10.1021/acscatal.2c02424
											
										
				Rana, S.; Pandey, B.; Dey, A.; Haque, R.; Rajaraman, G.; Maiti, D. ChemCatChem 2016,  8, 3367. doi: 10.1002/cctc.201600843
												 doi: 10.1002/cctc.201600843
											
										
				Ren, L.; Dai, W.; Yang, X.; Cao, Y.; Xie, Z.; Fan, K. Chin. J. Catal. 2006,  27, 115. doi: 10.1016/s1872-2067(06)60009-0
												 doi: 10.1016/s1872-2067(06)60009-0
											
										
				Solomon, E.; Ginsbach, J.; Heppner, D.; Kieber, M.; Kjaergaard, C.; Smeets, P.; Tian, L.; Woertink, J. Faraday Discuss. 2011,  148, 11. doi: 10.1039/c005500j
												 doi: 10.1039/c005500j
											
										
				Chen, P.; Root, D.; Cecelia, C.; Kiyoshi, F.; Solomon, E. J. Am. Chem. Soc. 2002,  125, 466. doi: 10.1021/ja020969i
												 doi: 10.1021/ja020969i
											
										
				Woertinka, J.; Smeetsa, P.; Groothaertb, M.; Vancea, M.; Selsb, B.; Schoonheydtb, R.; Solomona, E. Proc. Natl. Acad. Sci. U. S. A. 2009,  106, 18908. doi: 10.1073/pnas.0910461106
												 doi: 10.1073/pnas.0910461106
											
										
				Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018,  30, 1705197. doi: 10.1002/adma.201705197
												 doi: 10.1002/adma.201705197
											
										
				Dong, J. -C.; Zhang, X. -G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. -L.; Wu, D. -Y.; Feliu, J. M.; Williams, C. T.; et al.  Nat. Energy 2018,  4, 60. doi: 10.1038/s41560-018-0292-z
												 doi: 10.1038/s41560-018-0292-z
											
										
				Denisov, I., Makris, T.; Sligar, S.; Kincaid, J. J. Phys. Chem. A 2008,  112, 13172. doi: 10.1021/jp8017875
												 doi: 10.1021/jp8017875
											
										
				Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Lamberti, C.; Zecchina, A. Angew. Chem. Int. Ed. 2002,  114, 4928. doi: 10.1002/ange.200290031
												 doi: 10.1002/ange.200290031
											
										
				Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A. -N.; Coperet, C. Nature 2020,  586, 708. doi: 10.1038/s41586-020-2826-3
												 doi: 10.1038/s41586-020-2826-3
											
										
				Song, Y. Y.; Wang, G. C. J. Phys. Chem. C 2018,  122, 21500. doi: 10.1021/acs.jpcc.8b07044
												 doi: 10.1021/acs.jpcc.8b07044
											
										
				Fernandez, E.; Boronat, M.; Corma, A. J. Phys. Chem. C 2020,  124, 21549. doi: 10.1021/acs.jpcc.0c0629
												 doi: 10.1021/acs.jpcc.0c0629
											
										
				Sun, B.; Wang, G. -C. J. Phys. Chem. C 2024,  128, 13829. doi: 10.1021/acs.jpcc.4c03206
												 doi: 10.1021/acs.jpcc.4c03206
											
										
						
						
						
	                Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Xue-Peng Zhang , Yuchi Long , Yushu Pan , Jiding Wang , Baoyu Bai , Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060