Citation: Jianyu Qin,  Yuejiao An,  Yanfeng Zhang. In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240800. doi: 10.3866/PKU.WHXB202408002 shu

In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction

  • Corresponding author: Yanfeng Zhang, zhangyanfeng@hebtu.edu.cn
  • Received Date: 1 August 2024
    Revised Date: 2 September 2024
    Accepted Date: 2 September 2024

    Fund Project: This work was supported by Hebei Provincial Natural Science Foundation (B2020205013, B2022205008), Science and Technology Project of Hebei Normal University of China (L2021K01), Innovation Capability Improvement Plan Project of Hebei Province (22567604H).

  • Reforming CO2 into storable solar fuels via semiconductor photocatalysis is considered an effective strategy to solve the greenhouse effect and resource shortage. Unfortunately, the problem of rapid photogenerated carriers severely limits the CO2 reduction capability of one-component catalysts. The fabrication of S-scheme heterojunctions with defects can result in efficient spatial separation of photo-generated charge carriers and increase adsorption and activation of nonpolar molecules. Herein, ZnWO4/g-C3N4 S-scheme heterojunctions with defects are constructed through in situ growth method. The experiments show that the generation rate of CO from CO2 reduction is up to 232.4 μmol∙g-1∙h-1 with a selectivity close to 100%, which is 11.6 and 8.5 times higher than those of pristine ZnWO4 and g-C3N4, respectively. In situ XPS and work function analyses demonstrate the S-scheme charge transport pathway, which facilitates the spatial segregation of photogenerated carriers and promotes CO2 reduction. In situ ESR illustrates that CO₂ molecules are adsorbed by nitrogen vacancies, which act as photoelectron acceptors during the photocatalytic reaction and are favorable for charge trapping and separation. The S-scheme charge transport mode and nitrogen vacancy work together to stimulate the efficient conversion of CO2 to CO. This work presents significant insights to the cooperative influence of the S-scheme charge transport mode and defects in regulating CO2 reduction activity.
  • 加载中
    1. [1]

      (1) Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi:10.1038/nature11475

    2. [2]

      (2) Talapaneni, S. N.; Singh, G.; Kim, I. Y.; Albahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Adv. Mater. 2020, 32, 1904635. doi:10.1002/adma.201904635

    3. [3]

      (3) Navarro-Jaen, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Nat Rev Chem. 2021, 5, 564. doi:10.1038/s41570-021-00289-y

    4. [4]

      (4) Wang, Z.; Zou, G.; Park, J. H.; Zhang, K. Sci. China Mater. 2024, 67 (2), 397. doi:10.1007/s40843-023-2698-5

    5. [5]

      (5) Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2021, 60, 20627. doi:10.1002/anie.202101818

    6. [6]

      (6) Ran, J.; Jaroniec, M.; Qiao, S. Adv. Mater. 2018, 30, 1704649. doi:10.1002/adma.201704649

    7. [7]

      (7) Zhang, X.; Liu, K.; Fu, J.; Li, H.; Pan, H.; Hu, J.; Liu, M. Front. Phys. 2021, 16, 63500. doi:10.1007/s11467-021-1079-4

    8. [8]

      (8) Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6

    9. [9]

      (9) Wang, L.; Zhang, S.; Zhang, L.; Yu, J. Appl. Catal. B 2024, 355, 124167. doi:10.1016/j.apcatb.2024.124167

    10. [10]

      (10) Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Chin. J. Catal. 2023, 51, 180. doi:10.1016/S1872-2067(23)64480-8

    11. [11]

      (11) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288

    12. [12]

      (12) Lin, M.; Chen, H.; Zhang, Z.; Wang, X. Phys. Chem. Chem. Phys. 2023, 25, 4388. doi:10.1039/d2cp05281d

    13. [13]

      (13) Wang, X.; Chen, Q.; Zhou, Y.; Tan, Y.; Wang, Y.; Li, H.; Chen, Y.; Sayed, M.; Geioushy, R. A.; Allam, N. K.; et al. Nano Res. 2024, 17, 1101. doi:10.1007/s12274-023-5910-9

    14. [14]

      (14) Wu, Y.; Zhou, S.; He, T.; Jin, X.; Lun, L. Appl. Surf. Sci. 2019, 484, 409. doi:10.1016/j.apsusc.2019.04.116

    15. [15]

      (15) Liu, J.; He, D. J. CO2 Util. 2018, 26, 370. doi:10.1016/j.jcou.2018.05.025

    16. [16]

      (16) Liang, T.; Yu, Z.; Bin, Y.; Zhang, S.; Wei, J.; Liu, Y.; Zhu, T.; Fan, S.; Shen, Y.; Wang, S.; et al. Chem. Eng. J. 2024, 479, 147942. doi:10.1016/j.cej.2023.147942

    17. [17]

      (17) Zhang, C.; Zhang, H.; Zhang, K.; Li, X.; Leng, Q.; Hu, C. ACS Appl. Mater. Interfaces 2014, 6, 14423. doi:10.1021/am503696b

    18. [18]

      (18) Bai, X.; Wang, L.; Zhu, Y. ACS Catal. 2012, 2, 2769. doi:10.1021/cs3005852

    19. [19]

      (19) Xiang, D.; Hao, X.; Guo, X.; Wang, G.; Yang, K.; Jin, Z. Adv. Mater. Interfaces 2022, 9, 2201400. doi:10.1002/admi.202201400

    20. [20]

      (20) Li, J.; Li, M.; Li, H.; Jin, Z. J. Mater. Chem. C 2022, 10, 2181. doi:10.1039/d1tc04932a

    21. [21]

      (21) Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187. doi:10.1016/j.matt.2022.09.009

    22. [22]

      (22) Xu, Q.; He, R.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211009. doi:10.3866/PKU.WHXB202211009

    23. [23]

      (23) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668

    24. [24]

      (24) Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi:10.1016/S1872-2067(23)64477-8

    25. [25]

      (25) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010

    26. [26]

      (26) Yan, J.; Wei, L. Acta Phys. -Chim. Sin. 2024, 40, 2312024. doi:10.3866/PKU.WHXB202312024

    27. [27]

      (27) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    28. [28]

      (28) Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi:10.1021/acscatal.3c03095

    29. [29]

      (29) Shao, X.; Li, K.; Li, J.; Cheng, Q.; Wang, G.; Wang, K. Chin. J. Catal. 2023, 51, 193. doi:10.1016/S1872-2067(23)64478-X

    30. [30]

      (30) Ong, W.; Tan, L.; Ng, Y. H.; Yong, S.; Chai, S. Chem. Rev. 2016, 116, 7159. doi:10.1021/acs.chemrev.6b00075

    31. [31]

      (31) Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi:10.1002/aenm.201701503

    32. [32]

      (32) Rocha, G. F. S. R.; Da Silva, M. A. R.; Rogolino, A.; Diab, G. A. A.; Noleto, L. F. G.; Antonietti, M.; Teixeira, I. F. Chem. Soc. Rev. 2023, 52, 4878. doi:10.1039/d2cs00806h

    33. [33]

      (33) Fu, J.; Wang, S.; Wang, Z.; Liu, K.; Li, H.; Liu, H.; Hu, J.; Xu, X.; Li, H.; Liu, M. Front. Phys. 2020, 15, 33201. doi:10.1007/s11467-019-0950-z

    34. [34]

      (34) Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 541. doi:10.1007/s40843-023-2770-8

    35. [35]

      (35) Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67 (2), 444. doi:10.1007/s40843-023-2755-2

    36. [36]

      (36) Zhong, R.; Liang, Y.; Huang, F.; Liang, S.; Liu, S. Chin. J. Catal. 2023, 53, 109. doi:10.1016/S1872-2067(23)64513-9

    37. [37]

      (37) Hu, S.; Qiao, P.; Liu, Z.; Zhang, X.; Zhang, F.; Ye, J.; Wang, D. J. Catal. 2024, 432, 115405. doi:10.1016/j.jcat.2024.115405

    38. [38]

      (38) Shen, Y.; Han, Q.; Hu, J.; Gao, W.; Wang, L.; Yang, L.; Gao, C.; Shen, Q.; Wu, C.; Wang, X.; et al. ACS Appl. Energy Mater. 2020, 3, 6561. doi:10.1021/acsaem.0c00750

    39. [39]

      (39) Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212026. doi:10.3866/PKU.WHXB202212026

    40. [40]

      (40) Li, Y.; Ren, Z.; He, Z.; Ouyang, P.; Duan, Y.; Zhang, W.; Lv, K.; Dong, F. Green Energy Environ. 2024, 9, 623. doi:10.1016/j.gee.2023.02.012

    41. [41]

      (41) Li, Q.; Jiao, Y.; Tang, Y.; Zhou, J.; Wu, B.; Jiang, B.; Fu, H. J. Am. Chem. Soc. 2023, 145, 20837. doi:10.1021/jacs.3c05234

    42. [42]

      (42) Su, L.; Wang, P.; Li, M.; Zhao, Z.; Li, Y.; Zhan, S. Appl. Catal. B 2023, 335, 122890. doi:10.1016/j.apcatb.2023.122890

    43. [43]

      (43) He, W.; Wei, Y.; Xiong, J.; Tang, Z.; Wang, Y.; Wang, X.; Xu, H.; Zhang, X.; Yu, X.; Zhao, Z.; et al. J. Energy Chem. 2023, 80, 361. doi:10.1016/j.jechem.2023.01.028

    44. [44]

      (44) Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. Diamond Relat. Mater. 2020, 108, 107981. doi:10.1016/j.diamond.2020.107981

    45. [45]

      (45) Zhu, L.; Li, H.; Xu, Q.; Xiong, D.; Xia, P. J. Colloid Interface Sci. 2020, 564, 303.doi:10.1016/j.jcis.2019.12.088

    46. [46]

      (46) Guan, C.; Liao, Y.; Xiang, Q. Sci. China Mater. 2024, 67 (2), 473. doi:10.1007/s40843-023-2703-0

    47. [47]

      (47) Zhou, J.; Gao, B.; Wu, D.; Tian, C.; Ran, H.; Chen, W.; Huang, Q.; Zhang, W.; Qi, F.; Zhang, N. P.; et al. Adv. Funct. Mater. 2024, 34, 2308411. doi:10.1002/adfm.202308411

    48. [48]

      (48) Omr, H. A. E.; Putikam, R.; Hussien, M. K.; Sabbah, A.; Lin, T.; Chen, K.; Wu, H.; Feng, S.; Lin, M.; Lee, H. Appl. Catal. B 2023, 324, 122231. doi:10.1016/j.apcatb.2022.122231

    49. [49]

      (49) Zhao, F.; Zhu, B.; Wang, L.; Yu, J. J. Colloid Interface Sci. 2024, 659, 486. doi:10.1016/j.jcis.2023.12.173

    50. [50]

      (50) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1

    51. [51]

      (51) Zhou, B.; Xu, S.; Wu, L.; Li, M.; Chong, Y.; Qiu, Y.; Chen, G.; Zhao, Y.; Feng, C.; Ye, D.; et al. Small 2023, 19, 2302058. doi:10.1002/smll.202302058

    52. [52]

      (52) He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi:10.1021/acscatal.4c00026

    53. [53]

      (53) Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi:10.1002/adma.202406460

    54. [54]

      (54) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    55. [55]

      (55) Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40 (4), 2307022. doi:10.3866/PKU.WHXB202307022

    56. [56]

      (56) Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi:10.1038/s41467-020-18350-7

    57. [57]

      (57) Luo, L.; Fu, L.; Liu, H.; Xu, Y.; Xing, J.; Chang, C.; Yang, D.; Tang, J. Nat. Commun. 2022, 13, 2930. doi:10.1038/s41467-022-30434-0

    58. [58]

      (58) Lei, B.; Cui, W.; Chen, P.; Chen, L.; Li, J.; Dong, F. ACS Catal. 2022, 12, 9670. doi:10.1021/acscatal.2c02390

    59. [59]

      (59) Li, R.; Tung, C.; Zhu, B.; Lin, Y.; Tian, F.; Liu, T.; Chen, H.; Kuang, P.; Yu, J. Colloid Interface Sci. 2024, 674, 326. doi:10.1016/j.jcis.2024.06.176

    60. [60]

      (60) Miao, Z.; Wang, Q.; Zhang, Y.; Meng, L.; Wang, X. Appl. Catal. B 2022, 301, 120802. doi:10.1016/j.apcatb.2021.120802

    61. [61]

      (61) Li, Y.; Yin, Q.; Zeng, Y.; Liu, Z. Chem. Eng. J. 2022, 438, 135652. doi:10.1016/j.cej.2022.135652

    62. [62]

      (62) Fan, Y.; Hu, Z.; Hao, X.; Jin, Z. Carbon 2024, 228, 119418. doi:10.1016/j.carbon.2024.119418

    63. [63]

      (63) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 514. doi:10.1007/s40843-023-2725-y

    64. [64]

      (64) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40 (10), 2309031. doi:10.3866/PKU.WHXB202309031

    65. [65]

      (65) Fu, L.; Zhang, R.; Yang, J.; Shi, J.; Jiang, H.; Tang, J. Adv. Energy Mater. 2023, 13, 2301118. doi:10.1002/aenm.202301118

    66. [66]

      (66) Chen, G.; Li, H.; Zhou, Y.; Cai, C.; Liu, K.; Hu, J.; Li, H.; Fu, J.; Liu, M. Nanoscale 2021, 13, 13604. doi:10.1039/d1nr03221f.

    67. [67]

      (67) Hao, J.; Zhang, Y.; Zhang, L.; Shen, J.; Meng, L.; Wang, X. Chem. Eng. J. 2023, 464, 142536. doi:10.1016/j.cej.2023.142536

    68. [68]

      (68) Liu, K.; Fu, J.; Zhu, L.; Zhang, X.; Li, H.; Liu, H.; Hu, J.; Liu, M. Nanoscale 2020, 12, 4903. doi:10.1039/c9nr09117c

    69. [69]

      (69) Zhu, Z.; Huang, H.; Liu, L.; Chen, F.; Tian, N.; Zhang, Y.; Yu, H. Angew. Chem. Int. Ed. 2022, 61, e202203519. doi:10.1002/anie.202203519

    70. [70]

      (70) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    71. [71]

      (71) Wu, J.; Li, K.; Yang, S.; Song, C.; Guo, X. Chem. Eng. J. 2023, 452, 139493. doi:10.1016/j.cej.2022.139493

    72. [72]

      (72) Wang, Q.; Miao, Z.; Zhang, Y.; Yan, T.; Meng, L.; Wang, X. ACS Catal. 2022, 12, 4016. doi:10.1021/acscatal.1c05553

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(61)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return