Citation: Jianbao Mei, Bei Li, Shu Zhang, Dongdong Xiao, Pu Hu, Geng Zhang. Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407023 shu

Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries

  • Corresponding author: Pu Hu, hupu@wit.edu.cn Geng Zhang, zhangziying04@163.com
  • Received Date: 25 July 2024
    Revised Date: 12 September 2024
    Accepted Date: 12 September 2024
    Available Online: 23 September 2024

    Fund Project: financially supported by the National Natural Science Foundation of China 52172227Natural Science Foundation of Hubei Province 2023AFA114The authors are grateful to the Startup Fund 20QD80Graduated Innovative Fund of Wuhan Institute of Technology CX2023068

  • Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na3.5−xMn0.5V1.5−xZrx(PO4)3/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V4+/V5+ redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na3.4Mn0.5V1.4Zr0.1(PO4)3/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g−1 at 20C), significantly outperforming pristine Na3.5Mn0.5V1.5(PO4)3/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Davies, D. M.; Verde, M. G.; Mnyshenko, O.; Chen, Y. R.; Rajeev, R.; Meng, Y. S.; Elliott, G. Nat. Energy 2018, 4, 42. doi: 10.1038/s41560-018-0290-1  doi: 10.1038/s41560-018-0290-1

    3. [3]

      Hu, Z.; Niu, Y.; Rong, X.; Hu, Y. Acta Phys.-Chim. Sin. 2024, 40, 2306005.  doi: 10.3866/pku.Whxb202306005

    4. [4]

      Yu, H.; Ruan, X.; Wang, J.; Gu, Z.; Liang, Q.; Cao, J.-M.; Kang, J.; Du, C.-F.; Wu, X.-L. ACS Nano 2022, 16, 21174. doi: 10.1021/acsnano.2c09122  doi: 10.1021/acsnano.2c09122

    5. [5]

      Song, C.; Li, S.; Bai, Y. Nano Res. 2023, 17, 2728. doi: 10.1007/s12274-023-6164-2  doi: 10.1007/s12274-023-6164-2

    6. [6]

      Chen, M.; Hua, W.; Xiao, J.; Zhang, J.; Lau, V. W.-H.; Park, M.; Lee, G.-H.; Lee, S.; Wang, W.; Peng, J.; et al. J. Am. Chem. Soc. 2021, 143, 18091. doi: 10.1021/jacs.1c06727  doi: 10.1021/jacs.1c06727

    7. [7]

      Wang, K.; Li, H.; Guo, G.; Zheng, L.; Passerini, S.; Zhang, H. ACS Energy Lett. 2023, 8, 1671. doi: 10.1021/acsenergylett.2c02837  doi: 10.1021/acsenergylett.2c02837

    8. [8]

      Heng, Y.; Gu, Z.; Guo, J.; Wu, X. Acta Phys.-Chim. Sin. 2021, 37, 2005013.  doi: 10.3866/PKU.WHXB202005013

    9. [9]

      Ahsan, Z.; Cai, Z.; Wang, S.; Moin, M.; Wang, H.; Liu, D.; Ma, Y.; Song, G.; Wen, C. Adv. Energy Mater. 2024, 14, 2400373. doi: 10.1002/aenm.202400373  doi: 10.1002/aenm.202400373

    10. [10]

      Sun, L.; Wu, Z.; Hou, M.; Ni, Y.; Sun, H.; Jiao, P.; Li, H.; Zhang, W.; Zhang, L.; Zhang, K.; et al. Energy Environ. Sci. 2024, 17, 210. doi: 10.1039/d3ee02817h  doi: 10.1039/d3ee02817h

    11. [11]

      Buryak, N. S.; Anishchenko, D. V.; Levin, E. E.; Ryazantsev, S. V.; Martin-Diaconescu, V.; Zakharkin, M. V.; Nikitina, V. A.; Antipov, E. V. J. Power Sources 2022, 518, 230769. doi: 10.1016/j.jpowsour.2021.230769  doi: 10.1016/j.jpowsour.2021.230769

    12. [12]

      Xu, C.; Zhao, J.; Wang, Y.-A.; Hua, W.; Fu, Q.; Liang, X.; Rong, X.; Zhang, Q.; Guo, X.; Yang, C.; et al. Adv. Energy Mater. 2022, 12, 2200966. doi: 10.1002/aenm.202200966  doi: 10.1002/aenm.202200966

    13. [13]

      Shao, Y.; Qian, Y.; Zhang, T.; Zhang, P.; Wang, H.; Qian, T.; Yan, C. Inorg. Chem. Front. 2024, 11, 4552. doi: 10.1039/d4qi01141d  doi: 10.1039/d4qi01141d

    14. [14]

      Meng, W.; Dang, Z.; Li, D.; Jiang, L. Adv. Mater. 2023, 35, 2301376. doi: 10.1002/adma.202301376  doi: 10.1002/adma.202301376

    15. [15]

      Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc 2018, 140, 18192. doi: 10.1021/jacs.8b11388  doi: 10.1021/jacs.8b11388

    16. [16]

      Tian, J.-L.; Wu, L.-R.; Zhao, H.-J.; Xu, S.-D.; Chen, L.; Zhang, D.; Duan, X.-C. Rare Met. 2023, 43, 113. doi: 10.1007/s12598-023-02422-w  doi: 10.1007/s12598-023-02422-w

    17. [17]

      Chu, S.; Guo, S.; Zhou, H. Chem. Soc. Rev 2021, 50, 13189. doi: 10.1039/d1cs00442e  doi: 10.1039/d1cs00442e

    18. [18]

      Cao, X.; Zhou, J.; Pan, A.; Liang, S. Acta Phys.-Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    19. [19]

      Hu, P.; Zou, Z.; Sun, X.; Wang, D.; Ma, J.; Kong, Q.; Xiao, D.; Gu, L.; Zhou, X.; Zhao, J.; et al. Adv. Mater. 2020, 32, 1907526. doi: 10.1002/adma.201907526  doi: 10.1002/adma.201907526

    20. [20]

      Li, B.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. J. Alloy. Compd. 2024, 977, 173259 . doi: 10.1016/j.jallcom.2023.173259  doi: 10.1016/j.jallcom.2023.173259

    21. [21]

      Ge, X.; He, L.; Guan, C.; Wang, X.; Li, J.; Lai, Y.; Zhang, Z. ACS Nano 2023, 18, 1714. doi: 10.1021/acsnano.3c10319  doi: 10.1021/acsnano.3c10319

    22. [22]

      Li, Y.; Chen, B.; Wang, Y.; Xing, H.; Zhao, W.; Zhang, G.; Shi, S. Acta Phys.-Chim. Sin. 2024, 40, 2305053.  doi: 10.3866/PKU.WHXB202305053

    23. [23]

      Hou, J.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M.; Hay Kan, W.; Avdeev, M.; Zhong, G.; Liao Y.; Lai Y.; et al. Energy Storage Mater. 2021, 42, 307. doi: 10.1016/j.ensm.2021.07.040  doi: 10.1016/j.ensm.2021.07.040

    24. [24]

      Singh, B.; Wang, Z.; Park, S.; Gautam, G. S.; Chotard, J.-N.; Croguennec, L.; Carlier, D.; Cheetham, A. K.; Masquelier, C.; Canepa, P. J. Mater. Chem. A 2021, 9, 281. doi: 10.1039/d0ta10688g  doi: 10.1039/d0ta10688g

    25. [25]

      Snarskis, G.; Pilipavičius, J.; Gryaznov, D.; Mikoliu̅naitė, L.; Vilčiauskas, L. Chem. Mater 2021, 33, 8394. doi: 10.1021/acs.chemmater.1c02775  doi: 10.1021/acs.chemmater.1c02775

    26. [26]

      Huang, H.-B.; Luo, S.-H.; Liu, C.-L.; Yang, Y.; Zhai, Y.-C.; Chang, L.-J.; Li, M.-Q. Appl. Surf. Sci. 2019, 487, 1159. doi: 10.1016/j.apsusc.2019.05.224  doi: 10.1016/j.apsusc.2019.05.224

    27. [27]

      Li, H.; Wang, Y.; Zhao, X.; Jin, J.; Shen, Q.; Li, J.; Liu, Y.; Qu, X.; Jiao, L.; Liu, Y. ACS Energy Lett. 2023, 8, 3666. doi: 10.1021/acsenergylett.3c01183  doi: 10.1021/acsenergylett.3c01183

    28. [28]

      Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.; Dou, S.; Chong, S. ACS Nano 2023, 17, 11220. doi: 10.1021/acsnano.3c02892  doi: 10.1021/acsnano.3c02892

    29. [29]

      Zhao, Y.; Liu, Q.; Zhao, X.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Mater. Today 2023, 62, 271. doi: 10.1016/j.mattod.2022.11.024  doi: 10.1016/j.mattod.2022.11.024

    30. [30]

      Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lu, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater. 2022, 32, 2209482. doi: 10.1002/adfm.202209482  doi: 10.1002/adfm.202209482

    31. [31]

      Li, B.; Mei, J.; Wang, X.; Shang, C.; Shen, X.; Hu, P. Energy Fuels 2024, 38, 1508. doi: 10.1021/acs.energyfuels.3c03740  doi: 10.1021/acs.energyfuels.3c03740

    32. [32]

      Li, B.; Zou, Y.; Zhang, S.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. Electrochim. Acta 2024, 475, 143666. doi: 10.1016/j.electacta.2023.143666  doi: 10.1016/j.electacta.2023.143666

    33. [33]

      Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. J. Am. Chem. Soc 2011, 133, 11900. doi: 10.1021/ja204321y  doi: 10.1021/ja204321y

    34. [34]

      Geng, Y.; Zhang, T.; Xu, T.; Mao, W.; Li, D.; Dai, K.; Zhang, J.; Ai, G. Energy Storage Mater. 2022, 49, 67. doi: 10.1016/j.ensm.2022.03.044  doi: 10.1016/j.ensm.2022.03.044

    35. [35]

      Nagai, T.; Mochizuki, Y.; Yoshida, S.; Kimura, T. J. Am. Chem. Soc 2023, 145, 8090. doi: 10.1021/jacs.3c00797  doi: 10.1021/jacs.3c00797

    36. [36]

      Wang, S.-M.; Li, J.-Q.; Xu, L.; Sun, M.-J.; Huang, W.-J.; Liu, Q.; Ren, F.-T.; Sun, Y.-J.; Duan, L.-Y.; Ma, H.; et al. Rare Met. 2024, 43, 4253. doi: 10.1007/s12598-024-02777-8  doi: 10.1007/s12598-024-02777-8

    37. [37]

      Difi, S.; Saadoune, I.; Sougrati, M. T.; Hakkou, R.; Edstrom, K.; Lippens, P.-E. J. Phys. Chem. C 2015, 119, 25220. doi: 10.1021/acs.jpcc.5b07931  doi: 10.1021/acs.jpcc.5b07931

    38. [38]

      Xu, L.; Li, J.; Liu, C.; Zou, G.; Hou, H.; Ji, X. Acta Phys.-Chim. Sin. 2020, 36, 1905013.  doi: 10.3866/PKU.WHXB201905013

    39. [39]

      Liu, X.; Feng, G.; Wu, Z.; Wang, D.; Wu, C.; Yang, L.; Xiang, W.; Chen, Y.; Guo, X.; Zhong, B. J. Alloy. Compd. 2020, 815, 152430. doi: 10.1016/j.jallcom.2019.152430  doi: 10.1016/j.jallcom.2019.152430

    40. [40]

      Guo, J.-Z.; Gu, Z.-Y.; Du, M.; Zhao, X.-X.; Wang, X.-T.; Wu, X.-L. Mater. Today 2023, 66, 221. doi: 10.1016/j.mattod.2023.03.020  doi: 10.1016/j.mattod.2023.03.020

    41. [41]

      Liu, Y.; Rong, X.; Bai, R.; Xiao, R.; Xu, C.; Zhang, C.; Xu, J.; Yin, W.; Zhang, Q.; Liang, X.; et al. Nat. Energy 2023, 8, 1088. doi: 10.1038/s41560-023-01301-z  doi: 10.1038/s41560-023-01301-z

    42. [42]

      Qin, D.; Ding, J.; Liang, C.; Liu, Q.; Feng, L.; Luo, Y.; Hu, G.; Luo, J.; Liu, X. Acta Phys.-Chim. Sin. 2024, 40, 2310034.  doi: 10.3866/pku.Whxb202310034

    43. [43]

      Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi: 10.1021/acssuschemeng.6b01536  doi: 10.1021/acssuschemeng.6b01536

    44. [44]

      Qi, X.-R.; Liu, Y.; Ma, L.-L.; Hou, B.-X.; Zhang, H.-W.; Li, X.-H.; Wang, Y.-S.; Hui, Y.-Q.; Wang, R.-X.; Bai, C.-Y.; et al. Rare Met. 2022, 41, 1637. doi: 10.1007/s12598-021-01900-3  doi: 10.1007/s12598-021-01900-3

    45. [45]

      Pan, W.; Guan, W.; Jiang, Y. Acta Phys.-Chim. Sin. 2020, 36, 1905017.  doi: 10.3866/PKU.WHXB201905017

    46. [46]

      Wang, D.; Yin, X.; Wu, J.; Luo, Y.; Shi, S. Acta Phys.-Chim. Sin. 2024, 40, 2307029.  doi: 10.3866/pku.Whxb202307029

    47. [47]

      Tang, A.; Zhang, S.; Lin, W.; Xiao, D.; Ma, J.; Shang, C.; Yan, M.; Zhang, Z.; Chen, C.; Huang, Z.; et al. Energy Storage Mater. 2023, 58, 271. doi: 10.1016/j.ensm.2023.03.024  doi: 10.1016/j.ensm.2023.03.024

    48. [48]

      Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044  doi: 10.1021/acs.nanolett.6b04044

    49. [49]

      Anishchenko, D. V.; Zakharkin, M. V.; Nikitina, V. A.; Stevenson, K. J.; Antipov, E. V. Electrochim. Acta 2020, 354, 136761. doi: 10.1016/j.electacta.2020.136761  doi: 10.1016/j.electacta.2020.136761

    50. [50]

      Zhang, J.; Zhao, X.; Song, Y.; Li, Q.; Liu, Y.; Chen, J.; Xing, X. Energy Storage Mater. 2019, 23, 25. doi: 10.1016/j.ensm.2019.05.041  doi: 10.1016/j.ensm.2019.05.041

    51. [51]

      Fu, Y.; Zhu, C. Acta Phys.-Chim. Sin. 2023, 39, 2209002.  doi: 10.3866/PKU.WHXB202209002

    52. [52]

      Han, Y.; Wang, X.; Yan, W.; Buzlukov, A. L.; Hu, P.; Zhang, L.; Yu, J.; Liu, T. ACS Appl. Mater. Interfaces 2024, 16, 35114. doi: 10.1021/acsami.4c05943  doi: 10.1021/acsami.4c05943

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    10. [10]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    17. [17]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    18. [18]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

Metrics
  • PDF Downloads(19)
  • Abstract views(1289)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return