Citation: Jianbao Mei,  Bei Li,  Shu Zhang,  Dongdong Xiao,  Pu Hu,  Geng Zhang. Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407023 shu

Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries

  • Corresponding author: Pu Hu,  Geng Zhang, 
  • Received Date: 25 July 2024
    Revised Date: 12 September 2024
    Accepted Date: 12 September 2024

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (52172227) and Natural Science Foundation of Hubei Province (2023AFA114). The authors are grateful to the Startup Fund (20QD80) and Graduated Innovative Fund of Wuhan Institute of Technology (CX2023068) for supporting this work.

  • Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V4+/V5+ redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na3.4Mn0.5V1.4Zr0.1(PO4)3/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g-1 at 20C), significantly outperforming pristine Na3.5Mn0.5V1.5(PO4)3/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.
  • 加载中
    1. [1]

      (1) Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. doi:10.1038/451652a

    2. [2]

      (2) Davies, D. M.; Verde, M. G.; Mnyshenko, O.; Chen, Y. R.; Rajeev, R.; Meng, Y. S.; Elliott, G. Nat. Energy 2018, 4, 42. doi:10.1038/s41560-018-0290-1

    3. [3]

    4. [4]

      (4) Yu, H.; Ruan, X.; Wang, J.; Gu, Z.; Liang, Q.; Cao, J.-M.; Kang, J.; Du, C.-F.; Wu, X.-L. ACS Nano 2022, 16, 21174. doi:10.1021/acsnano.2c09122

    5. [5]

      (5) Song, C.; Li, S.; Bai, Y. Nano Res. 2023, 17, 2728. doi:10.1007/s12274-023-6164-2

    6. [6]

      (6) Chen, M.; Hua, W.; Xiao, J.; Zhang, J.; Lau, V. W.-H.; Park, M.; Lee, G.-H.; Lee, S.;Wang, W.; Peng, J.; et al. J. Am. Chem. Soc. 2021, 143, 18091. doi:10.1021/jacs.1c06727

    7. [7]

      (7) Wang, K.; Li, H.; Guo, G.; Zheng, L.; Passerini, S.; Zhang, H. ACS Energy Lett. 2023, 8, 1671. doi:10.1021/acsenergylett.2c02837

    8. [8]

    9. [9]

      (9) Ahsan, Z.; Cai, Z.; Wang, S.; Moin, M.; Wang, H.; Liu, D.; Ma, Y.; Song, G.; Wen, C. Adv. Energy Mater. 2024, 14, 2400373. doi:10.1002/aenm.202400373

    10. [10]

      (10) Sun, L.; Wu, Z.; Hou, M.; Ni, Y.; Sun, H.; Jiao, P.; Li, H.; Zhang, W.; Zhang, L.; Zhang, K.; et al. Energy Environ. Sci. 2024, 17, 210. doi:10.1039/d3ee02817h

    11. [11]

      (11) Buryak, N. S.; Anishchenko, D. V.; Levin, E. E.; Ryazantsev, S. V.; Martin-Diaconescu, V.; Zakharkin, M. V.; Nikitina, V. A.; Antipov, E. V. J. Power Sources 2022, 518, 230769. doi:10.1016/j.jpowsour.2021.230769

    12. [12]

      (12) Xu, C.; Zhao, J.; Wang, Y.-A.; Hua, W.; Fu, Q.; Liang, X.; Rong, X.; Zhang, Q.; Guo, X.; Yang, C.; et al. Adv. Energy Mater. 2022, 12, 2200966. doi:10.1002/aenm.202200966

    13. [13]

      (13) Shao, Y.; Qian, Y.; Zhang, T.; Zhang, P.; Wang, H.; Qian, T.; Yan, C. Inorg. Chem. Front. 2024, 11, 4552. doi:10.1039/d4qi01141d

    14. [14]

      (14) Meng, W.; Dang, Z.; Li, D.; Jiang, L. Adv. Mater. 2023, 35, 2301376. doi:10.1002/adma.202301376

    15. [15]

      (15) Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc 2018, 140, 18192. doi:10.1021/jacs.8b11388

    16. [16]

      (16) Tian, J.-L.; Wu, L.-R.; Zhao, H.-J.; Xu, S.-D.; Chen, L.; Zhang, D.; Duan, X.-C. Rare Met. 2023, 43, 113. doi:10.1007/s12598-023-02422-w

    17. [17]

      (17) Chu, S.; Guo, S.; Zhou, H. Chem. Soc. Rev 2021, 50, 13189. doi:10.1039/d1cs00442e

    18. [18]

    19. [19]

      (19) Hu, P.; Zou, Z.; Sun, X.; Wang, D.; Ma, J.; Kong, Q.; Xiao, D.; Gu, L.; Zhou, X.; Zhao, J.; et al. Adv. Mater. 2020, 32, 1907526. doi:10.1002/adma.201907526

    20. [20]

      (20) Li, B.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. J. Alloy. Compd. 2024, 977, 173259 . doi:10.1016/j.jallcom.2023.173259

    21. [21]

      (21) Ge, X.; He, L.; Guan, C.; Wang, X.; Li, J.; Lai, Y.; Zhang, Z. ACS Nano 2023, 18, 1714. doi:10.1021/acsnano.3c10319

    22. [22]

    23. [23]

      (23) Hou, J.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M.; Hay Kan, W.; Avdeev, M.; Zhong ,G.; Liao Y.; Lai Y.; et al. Energy Storage Mater. 2021, 42, 307. doi:10.1016/j.ensm.2021.07.040

    24. [24]

      (24) Singh, B.; Wang, Z.; Park, S.; Gautam, G. S.; Chotard, J.-N.; Croguennec, L.; Carlier, D.; Cheetham, A. K.; Masquelier, C.; Canepa, P. J. Mater. Chem. A 2021, 9, 281. doi:10.1039/d0ta10688g

    25. [25]

      (25) Snarskis, G.; Pilipavičius, J.; Gryaznov, D.; Mikoliu̅naitė, L.; Vilčiauskas, L. Chem. Mater 2021, 33, 8394. doi:10.1021/acs.chemmater.1c02775

    26. [26]

      (26) Huang, H.-B.; Luo, S.-H.; Liu, C.-L.; Yang, Y.; Zhai, Y.-C.; Chang, L.-J.; Li, M.-Q. Appl. Surf. Sci. 2019, 487, 1159. doi:10.1016/j.apsusc.2019.05.224

    27. [27]

      (27) Li, H.; Wang, Y.; Zhao, X.; Jin, J.; Shen, Q.; Li, J.; Liu, Y.; Qu, X.; Jiao, L.; Liu, Y. ACS Energy Lett. 2023, 8, 3666. doi:10.1021/acsenergylett.3c01183

    28. [28]

      (28) Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.; Dou, S.; Chong, S. ACS Nano 2023, 17, 11220. doi:10.1021/acsnano.3c02892

    29. [29]

      (29) Zhao, Y.; Liu, Q.; Zhao, X.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Mater. Today 2023, 62, 271. doi:10.1016/j.mattod.2022.11.024

    30. [30]

      (30) Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lu, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater. 2022, 32, 2209482. doi:10.1002/adfm.202209482

    31. [31]

      (31) Li, B.; Mei, J.; Wang, X.; Shang, C.; Shen, X.; Hu, P. Energy Fuels 2024, 38, 1508. doi:10.1021/acs.energyfuels.3c03740

    32. [32]

      (32) Li, B.; Zou, Y.; Zhang, S.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. Electrochim. Acta 2024, 475, 143666. doi:10.1016/j.electacta.2023.143666

    33. [33]

      (33) Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. J. Am. Chem. Soc 2011, 133, 11900. doi:10.1021/ja204321y

    34. [34]

      (34) Geng, Y.; Zhang, T.; Xu, T.; Mao, W.; Li, D.; Dai, K.; Zhang, J.; Ai, G. Energy Storage Mater. 2022, 49, 67. doi:10.1016/j.ensm.2022.03.044

    35. [35]

      (35) Nagai, T.; Mochizuki, Y.; Yoshida, S.; Kimura, T. J. Am. Chem. Soc 2023, 145, 8090. doi:10.1021/jacs.3c00797

    36. [36]

      (36) Wang, S.-M.; Li, J.-Q.; Xu, L.; Sun, M.-J.; Huang, W.-J.; Liu, Q.; Ren, F.-T.; Sun, Y.-J.; Duan, L.-Y.; Ma, H.; et al. Rare Met. 2024, 43, 4253. doi:10.1007/s12598-024-02777-8

    37. [37]

      (37) Difi, S.; Saadoune, I.; Sougrati, M. T.; Hakkou, R.; Edstrom, K.; Lippens, P.-E. J. Phys. Chem. C 2015, 119, 25220. doi:10.1021/acs.jpcc.5b07931

    38. [38]

    39. [39]

      (39) Liu, X.; Feng, G.; Wu, Z.; Wang, D.; Wu, C.; Yang, L.; Xiang, W.; Chen, Y.; Guo, X.; Zhong, B. J. Alloy. Compd. 2020, 815, 152430. doi:10.1016/j.jallcom.2019.152430

    40. [40]

      (40) Guo, J.-Z.; Gu, Z.-Y.; Du, M.; Zhao, X.-X.; Wang, X.-T.; Wu, X.-L. Mater. Today 2023, 66, 221. doi:10.1016/j.mattod.2023.03.020

    41. [41]

      (41) Liu, Y.; Rong, X.; Bai, R.; Xiao, R.; Xu, C.; Zhang, C.; Xu, J.; Yin, W.; Zhang, Q.; Liang, X.; et al. Nat. Energy 2023, 8, 1088. doi:10.1038/s41560-023-01301-z

    42. [42]

    43. [43]

      (43) Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi:10.1021/acssuschemeng.6b01536

    44. [44]

      (44) Qi, X.-R.; Liu, Y.; Ma, L.-L.; Hou, B.-X.; Zhang, H.-W.; Li, X.-H.; Wang, Y.-S.; Hui, Y.-Q.; Wang, R.-X.; Bai, C.-Y.; et al. Rare Met. 2022, 41, 1637. doi:10.1007/s12598-021-01900-3

    45. [45]

    46. [46]

    47. [47]

      (47) Tang, A.; Zhang, S.; Lin, W.; Xiao, D.; Ma, J.; Shang, C.; Yan, M.; Zhang, Z.; Chen, C.; Huang, Z.; et al. Energy Storage Mater. 2023, 58, 271. doi:10.1016/j.ensm.2023.03.024

    48. [48]

      (48) Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi:10.1021/acs.nanolett.6b04044

    49. [49]

      (49) Anishchenko, D. V.; Zakharkin, M. V.; Nikitina, V. A.; Stevenson, K. J.; Antipov, E. V. Electrochim. Acta 2020, 354, 136761. doi:10.1016/j.electacta.2020.136761

    50. [50]

      (50) Zhang, J.; Zhao, X.; Song, Y.; Li, Q.; Liu, Y.; Chen, J.; Xing, X. Energy Storage Mater. 2019, 23, 25. doi:10.1016/j.ensm.2019.05.041

    51. [51]

    52. [52]

      (52) Han, Y.; Wang, X.; Yan, W.; Buzlukov, A. L.; Hu, P.; Zhang, L.; Yu, J.; Liu, T. ACS Appl. Mater. Interfaces 2024, 16, 35114. doi:10.1021/acsami.4c05943

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(1)
  • Abstract views(74)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return