Citation:
Kaihui Huang, Dejun Chen, Xin Zhang, Rongchen Shen, Peng Zhang, Difa Xu, Xin Li. Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica,
;2024, 40(12): 240702.
doi:
10.3866/PKU.WHXB202407020
-
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu2O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H2-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu2O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu2O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g-1∙h-1, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g-1∙h-1). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.
-
-
-
[1]
(1) Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387. doi:10.1038/s41929-019-0242-6
-
[2]
(2)
Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Mater. Today Phys. 2022, 27, 100767. doi:10.1016/j.mtphys.2022.100767
-
[3]
(3) Liu, H.; Zhang, Y. Y.; Li, D. J.; Li, Y. J.; Jin, Z. L. ACS Appl. Energy Mater. 2022, 5, 2474. doi:10.1021/acsaem.1c03967
-
[4]
(4) Meng, C.; Huang, M.; Li, Y. Chem. Res. Chin. Univ. 2023, 39, 697. doi:10.1007/s40242-023-3124-z
-
[5]
(5) Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China. Mater. 2024, 67, 444. doi:10.1007/s40843-023-2755-2
-
[6]
(6) Qian, Y.; Zhang, F.; Kang, D. J.; Pang, H. Energy Environ. Mater. 2023, 6, e12414. doi:10.1002/eem2.12414
-
[7]
(7) Wang, P.; Yang, M.; Tang, S. P.; Li, Y. J.; Lin, X.; Zhang, H. Y.; Zhu, Z.; Chen, F. T. J. Alloy. Compd. 2022, 918, 165607. doi:10.1016/j.jallcom.2022.165607
-
[8]
(8) Wang, X. P., Li, Y. J., Li, T.; Jin, Z. L. Adv. Sustain. Syst. 2023, 7, 2200139. doi:10.1002/adsu.202200139
-
[9]
(9) Fan, K.; Sun, Y.; Xu, P.; Guo, J.; Li, Z.; Shao, M. Chem. Res. Chin. Univ. 2022, 38, 1185. doi:10.1007/s40242-022-2254-z
-
[10]
(10) Cai, M.; Wei, Y.; Li, Y.; Li, X.; Wang, S.; Shao, G.; Zhang, P. EcoEnergy 2023, 1, 248. doi:10.1002/ece2.16
-
[11]
(11) Shen, R.; Liang, G.; Hao, L.; Zhang, P.; Li, X. Adv. Mater. 2023, 35, 2303649. doi:10.1002/adma.202303649
-
[12]
(12) Zheng, C. Y., Jiang, G. P., Li, Y. J.; Jin, Z. L. J. Alloy. Compd. 2022, 904, 164041. doi:10.1016/j.jallcom.2022.164041.
-
[13]
(13) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi:10.1016/j.jmst.2023.03.067
-
[14]
(14) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010
-
[15]
(15) Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi:10.3866/pku.Whxb202212016
-
[16]
(16) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688
-
[17]
(17) Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi:10.1016/j.jmst.2024.02.012
-
[18]
(18) Fan, Z. B.; Guo, X.; Liu, F. J.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. Appl. Mater. Today 2022, 29, 101637. doi:10.1016/j.apmt.2022.101637.
-
[19]
(19) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003
-
[20]
(20) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1
-
[21]
(21) Zhu, Z.; Zhang, H. Y.; Teng, Y.; Lin, X.; Li, M.; Li, Y. J. Surf. Interfaces 2023, 41, 103160. doi:10.1016/j.surfin.2023.103160
-
[22]
(22) Dong, Y.; Ji, P.; Xu, X.; Li, R.; Wang, Y.; Homewood, K. P.; Xia, X.; Gao, Y.; Chen, X. Energy Environ. Mater. 2024, 7, e12643. doi:10.1002/eem2.12643
-
[23]
(23) Liu, M.; Huang, Q.; Wang, S.; Li, Z.; Li, B.; Jin, S.; Tan, B. Angew. Chem. Int. Ed. 2018, 57, 11968. doi:10.1002/anie.201806664
-
[24]
(24) He, J.; Wang, X. D.; Jin, S. B.; Liu, Z. Q.; Zhu, M. S. Chin. J. Catal. 2022, 43, 1306. doi:10.1016/s1872-2067(21)63936-0.
-
[25]
(25) Zhang, G.; Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Adv. Funct. Mater. 2023, 33, 2308553. doi:10.1002/adfm.202308553.
-
[26]
(26) Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi:10.1002/adfm.202400065.
-
[27]
(27) Gao, Z.; Jian, Y.; Yang, S.; Xie, Q. J.; McFadzean, C. J. R.; Wei, B. S.; Tang, J. T.; Yuan, J. Y.; Pan, C. Y.; Yu, G. P. Angew. Chem. Int. Ed. 2023, 135, e202304173. doi:10.1002/anie.202304173.
-
[28]
(28) Liu, R.; Zhao, L.; Liu, B.; Yu, J.; Wang, Y.; Yu, W.; Xin, D.; Fang, C.; Jiang, X.; Hu, R.; et al. Chin. J. Struc. Chem. 2024, 43, 100332. doi:10.1016/j.cjsc.2024.100332
-
[29]
(29) Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Chem. Res. Chin. Univ. 2022, 38, 750. doi:10.1007/s40242-022-1504-4
-
[30]
(30) Huang, K.; Feng, B.; Wen, X.; Hao, L.; Xu, D.; Liang, G.; Shen, R.; Li, X. Chin. J. Struc. Chem. 2023, 42, 100204. doi:10.1016/j.cjsc.2023.100204
-
[31]
(31) Wan, L.; Zhou, Q.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J.; Yan, X.; Xia, M.; Li, Y. F.; et al. Nat. Catal. 2019, 2, 889. doi:10.1038/s41929-019-0338-z
-
[32]
(32) Han, X.; He, X.; Sun, L.; Han, X.; Zhan, W.; Xu, J.; Wang, X.; Chen, J. ACS Catal. 2018, 8, 3348. doi:10.1021/acscatal.7b04219
-
[33]
(33) Liu, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. ACS Appl. Mater. Inter. 2014, 6, 5629. doi:10.1021/am500131b
-
[34]
(34) Wang, K.; Yang, L.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Angew. Chem. Int. Ed. 2017, 56, 14149. doi:10.1002/anie.201708548
-
[35]
(35) Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L. J. Am. Chem. Soc. 2015, 137, 219. doi:10.1021/ja508693y
-
[36]
(36) Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2023, 42, 100202. doi:10.1016/j.cjsc.2023.100202
-
[37]
(37) Shen, R.; Li, N.; Qin, C.; Li, X.; Zhang, P.; Li, X.; Tang, J. Adv. Funct. Mater. 2023, 33, 2301463. doi:10.1002/adfm.202301463
-
[38]
(38) Zhang, M.; Chen, Z.; Wang, Y.; Zhang, J.; Zheng, X.; Rao, D.; Han, X.; Zhong, C.; Hu, W.; Deng, Y. Appl. Catal. B-Environ. 2019, 246, 202. doi:10.1016/j.apcatb.2019.01.042
-
[39]
(39) Hao, L.; Shen, R.; Huang, C.; Liang, Z.; Li, N.; Zhang, P.; Li, X.; Qin, C.; Li, X. Appl. Catal. B-Environ. 2023, 330, 122581. doi:10.1016/j.apcatb.2023.122581
-
[40]
(40) Waqas, M. Chem. Res. Chin. Univ. 2024, 40, 529. doi:10.1007/s40242-024-4055-z
-
[41]
(41) Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B-Environ. 2021, 291, 120104. doi:10.1016/j.apcatb.2021.120104
-
[42]
(42) Guo, L.; Gao, J.; Li, M.; Xie, Y.; Chen, H.; Wang, S.; Li, Z.; Wang, X.; Zhou, W. EcoEnergy 2023, 1, 437. doi:10.1002/ece2.20
-
[43]
(43) Xu, N.; Liu, Y.; Yang, W.; Tang, J.; Cai, B.; Li, Q.; Sun, J.; Wang, K.; Xu, B.; Zhang, Q. ACS Appl. Energy Mater. 2020, 3, 11939. doi:10.1021/acsaem.0c02102
-
[44]
(44) Sun, T.; Liang, Y.; Xu, Y. Angew. Chem. Int. Ed. 2022, 61, e202116875. doi:10.1002/anie.202116875
-
[45]
(45) Gao, S.; Zhang, P.; Huang, G.; Chen, Q.; Bi, J.; Wu, L. ChemSusChem 2021, 14, 3850. doi:10.1002/cssc.202101308
-
[46]
(46) Xu, Z.; Cui, Y.; Guo, B.; Li, H.-Y.; Li, H.-X. ChemCatChem 2021, 13, 958. doi:10.1002/cctc.202001631
-
[47]
(47) Feng, T.; Wang, J.; Gao, S.; Feng, C.; Shang, N.; Wang, C.; Li, X. Appl. Surf. Sci. 2019, 469, 431. doi:10.1016/j.apsusc.2018.11.036
-
[48]
(48) Yu, J.; Sun, X.; Xu, X.; Zhang, C.; He, X. Appl. Catal. B-Environ. 2019, 257, 117935. doi:10.1016/j.apcatb.2019.117935
-
[49]
(49) Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. J. Mater. Chem. A 2018, 6, 19775. doi:10.1039/C8TA07391K
-
[50]
(50) Chen, C.; Xiong, Y.; Zhong, X.; Lan, P.; Wei, Z.; Pan, H.; Su, P.; Song, Y.; Chen, Y. F.; Nafady, A.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114071. doi:10.1002/anie.202114071
-
[51]
(51) Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A. Chem. Commun. 2017, 53, 5854. doi:10.1039/C7CC01827D
-
[52]
(52) Liu, C.; Wang, Y. C.; Yang, Q.; Li, X. Y.; Yi, F.; Liu, K. W.; Cao, H. M.; Wang, C. J.; Yan, H. J. Chem.-A Eur. J. 2021, 27, 13059. doi:10.1002/chem.202101956
-
[53]
(53) Lan, Z.; Chi, X.; Wu, M.; Zhang, X.; Chen, X.; Zhang, G.; Wang, X. Small 2022, 18, 2200129. doi:10.1002/smll.202200129
-
[54]
(54) Huang, W.; He, Q.; Hu, Y.; Li, Y. Angew. Chem. Int. Ed. 2019, 131, 8768. doi:10.1002/ange.201900046
-
[55]
(55) Jiang, Q.; Sun, L.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. ChemSusChem 2018, 11, 1108. doi:10.1002/cssc.201702220
-
[56]
(56) Xu, N.; Cai, B.; Li, Q.; Liu, Y.; Tang, J.; Wang, K.; Xu, B.; Fan, Y. J. Alloy. Compd. 2021, 871, 159565. doi:10.1016/j.jallcom.2021.159565
-
[57]
(57) Liu, M.; Yang, K.; Li, Z.; Fan, E.; Fu, H.; Zhang, L.; Zhang, Y.; Zheng, Z. Chem. Commun. 2022, 58, 92. doi:10.1039/d1cc05619k
-
[58]
(58) Liu, M.; Wang, X.; Liu, J.; Wang, K.; Jin, S.; Tan, B. ACS Appl. Mater. Inter. 2020, 12, 12774. doi:10.1021/acsami.9b21903
-
[59]
(59) Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Edit. 2020, 59, 6007. doi:10.1002/anie.201914424
-
[60]
(60) Meier, C. B.; Clowes, R.; Berardo, E.; Jelfs, K. E.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Chem. Mater. 2019, 31, 8830. doi:10.1021/acs.chemmater.9b02825
-
[61]
(61) Li, Y.; Tang, Y.; Li, J.; Chang, Y.; Huang, H.; Zhong, C. J. Mater. Sci. 2021, 56, 5772. doi:10.1007/s10853-020-05637-9
-
[62]
(62) Zheng, L.; Wang, D.; Wu, S.; Jiang, X.; Zhang, J.; Xing, Q.; Zou, J.; Luo, S. J. Mater. Chem. A 2020, 8, 25425. doi:10.1039/D0TA10165F
-
[63]
(63) Chen, Y.; Huang, G.; Gao, Y.; Chen, Q.; Bi, J. Int. J. Hydrog. Energy 2022, 47, 8739. doi:10.1016/j.ijhydene.2021.12.220
-
[64]
(64) Liu, J.; Li, X.; Han, C.; Liu, M.; Li, X.; Sun, J.; Shao, C. Energy Environ. Mater. 2023, 6, e12404. doi:10.1002/eem2.12404
-
[65]
(65) Fu, C.; Li, D.; Zhang, J.; Guo, W.; Yang, H.; Zhao, B.; Chen, Z.; Fu, X.; Liang, Z.; Jiang, L. Chem. Res. Chin. Univ. 2023, 39, 891. doi:10.1007/s40242-023-3182-2
-
[66]
(66) Zhang, Z.; Xiang, K.; Wang, H.; Li, X.; Zou, J.; Liang, G.; Jiang, J. SusMat 2024, e229. doi:10.1002/sus2.229
-
[67]
(67) Li, Y.; Li, Y.; Yang, C.; Gan, L. J. Phys. Chem. C 2023, 127, 17732. doi:10.1021/acs.jpcc.3c04031
-
[68]
(68) Wu, Y.; Lv, H.; Wu, X. Chin. J. Struc. Chem. 2024, 100375. doi:10.1016/j.cjsc.2024.100375
-
[69]
(69) Yu, K.; He, P.; He, N.; Li, X.; Dong, C.; Jiang, B.; Zou, Y.; Pei, X.; Li, Y.; Ma, L. Sci. China Mater. 2023, 66, 4680. doi:10.1007/s40843-023-2599-9
-
[70]
(70) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031
-
[71]
(71) He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426
-
[72]
(72) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi:10.1016/S1872-2067(23)64444-4
-
[73]
(73) Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/S1872-2067(23)64607-8
-
[74]
(74) Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081
-
[75]
(75) Xu, Z.; Wu, Y.; Tao, R.; Jin, Z.; Fang, X. Chem. Res. Chin. Univ. 2023, 39, 928. doi:10.1007/s40242-022-2274-8
-
[76]
(76) Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. EcoEnergy 2023, 1, 197. doi:10.1002/ece2.8
-
[77]
(77) Zhan, H.; Zhou, R.; Liu, K.; Ma, Z.; Wang, P.; Zhan, S.; Zhou, Q. Sci. China Mater. 2024, 67, 1740. doi:10.1007/s40843-024-2900-5
-
[78]
(78) Zhang, P.; Li, Y.; Zhang, Y.; Hou, R.; Zhang, X.; Xue, C.; Wang, S.; Zhu, B.; Li, N.; Shao, G. Small Methods 2020, 4, 2000214. doi:10.1002/smtd.202000214
-
[1]
-
-
-
[1]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[2]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[3]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[4]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[5]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[6]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[7]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[8]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[9]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[10]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[11]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[12]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[13]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[14]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[15]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[16]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[17]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(532)
- HTML views(67)