Citation: Xiaofeng Zhu, Bingbing Xiao, Jiaxin Su, Shuai Wang, Qingran Zhang, Jun Wang. Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240700. doi: 10.3866/PKU.WHXB202407005 shu

Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides

  • Corresponding author: Xiaofeng Zhu, xfzhu@swust.edu.cn Qingran Zhang, qingran_zhang@tongji.edu.cn Jun Wang, junwang091@163.com
  • These authors contributed equally to this work.
  • Received Date: 7 July 2024
    Revised Date: 3 August 2024
    Accepted Date: 3 August 2024
    Available Online: 19 August 2024

    Fund Project: the National Natural Science Foundation of China 52202305the National Natural Science Foundation of China 22176155National Natural Science Foundation of Sichuan Province, China 2023NSFSC0095Outstanding Youth Talents of Sichuan Science and Technology Program 22JCQN0061Long Shan Talents Plan of SWUST 22zx7103Scientific Research Foundation for the Returned Overseas Chinese Scholars, Department of Human Resource and Social Security of Sichuan Province 22zd3148

  • Electrochemical oxygen reduction reaction via the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H2O2) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O2-to-H2O2 conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H2O2 electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.
  • 加载中
    1. [1]

      Hu, X.; Sun, Z.; Mei, G.; Zhao, X.; Xia, B. Y.; You, B. Adv. Energy Mater. 2022, 12 (32), 2201466. doi: 10.1002/aenm.202201466  doi: 10.1002/aenm.202201466

    2. [2]

      Yu, F.-Y.; Zhou, Y.-J.; Tan, H.-Q.; Li, Y.-G.; Kang, Z.-H. Adv. Energy Mater. 2023, 13 (14), 2300119. doi: 10.1002/aenm.202300119  doi: 10.1002/aenm.202300119

    3. [3]

      Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z; Su, C. Acta Phys. -Chim. Sin. 2023, 39 (11), 2301001. doi: 10.3866/PKU.WHXB202301001  doi: 10.3866/PKU.WHXB202301001

    4. [4]

      Lin, L.; Sun, Z.; Chen, H.; Zhao, L.; Sun, M.; Yang, Y.; Liao, Z.; Wu, X.; Li, X.; Tang, C. Acta Phys. -Chim. Sin. 2023, 40 (4), 2305019. doi: 10.3866/PKU.WHXB202305019  doi: 10.3866/PKU.WHXB202305019

    5. [5]

      Knotter, D. M. The Chemistry of Wet Cleaning. In Handbook of Cleaning in Semiconductor Manufacturing; Reinhardt, K. A., Reidy R. F. Eds.; Scrivener: Beverly, America, 2010; pp. 39–94. doi: 10.1002/9781118071748.ch2

    6. [6]

      Yuan, M.; Li, D.; Zhao, X.; Ma, W; Kong, K; Ni, W; Gu, Q; Hou, Z. Acta Phys. -Chim. Sin. 2018, 34 (8), 886. doi: 10.3866/PKU.WHXB201711151  doi: 10.3866/PKU.WHXB201711151

    7. [7]

      Du, K.-S.; Huang, J.-M. Green Chem. 2018, 20 (6), 1405. doi: 10.1039/C7GC03864J  doi: 10.1039/C7GC03864J

    8. [8]

      Dan, M.; Zhong, R.; Hu, S.; Wu, H.; Zhou, Y.; Liu, Z-Q. Chem Catal. 2022, 2 (8), 1919. doi: 10.1016/j.checat.2022.06.002  doi: 10.1016/j.checat.2022.06.002

    9. [9]

      Lu, X.; Wang, D.; Wu, K.-H.; Guo, X.; Qi, W. J. Colloid Interface Sci. 2020, 573, 376. doi: 10.1016/j.jcis.2020.04.030  doi: 10.1016/j.jcis.2020.04.030

    10. [10]

      Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi: 10.1002/anie.200503779  doi: 10.1002/anie.200503779

    11. [11]

      Xia, C.; Kim, J.Y.; Wang, H. Nat. Catal. 2020, 3 (8), 605. doi: 10.1038/s41929-020-0486-1  doi: 10.1038/s41929-020-0486-1

    12. [12]

      Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L,; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8 (5), 4064. doi: 10.1021/acscatal.8b00217  doi: 10.1021/acscatal.8b00217

    13. [13]

      Samanta, C. Appl. Catal., A 2008, 350 (2), 133. doi: 10.1016/j.apcata.2008.07.043  doi: 10.1016/j.apcata.2008.07.043

    14. [14]

      Lin, Z.; Zhang, Q.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; Xi, S.; Yang, H. Y.; Han, Z.; Yun, J.; Amal, R.; et al. Energy Environ. Sci. 2022, 15 (3), 1172. doi: 10.1039/D1EE02884G  doi: 10.1039/D1EE02884G

    15. [15]

      Li, Hc.; Wan, Q.; Du, C.; Zhao, J.; Li, F.; Zhang, Y.; Zheng, Y.; Chen, M.; Zhang, K. H. L.; Huang, J.; et al. Nat. Commun. 2022, 13 (1), 6072. doi: 10.1038/s41467-022-33757-0  doi: 10.1038/s41467-022-33757-0

    16. [16]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    17. [17]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    18. [18]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/S1872-2067(23)64514-0  doi: 10.1016/S1872-2067(23)64514-0

    19. [19]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15 (1), 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    20. [20]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15 (1), 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    21. [21]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36 (24), 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    22. [22]

      Zhang, Y.; Zhou, W.; Tang, Y.; Guo, Y.; Geng, Z.; Liu, L.; Tan, X.; Wang, H.; Yu, T.; Ye, J. Appl. Catal., B 2022, 305 (15), 121055. doi: 10.1016/j.apcatb.2021.121036  doi: 10.1016/j.apcatb.2021.121036

    23. [23]

      Sa, Y. J.; Kim, J. H.; Joo, S. H. Angew. Chem. Int. Ed. 2018, 58 (4), 1100. doi: 10.1002/anie.201812435  doi: 10.1002/anie.201812435

    24. [24]

      Ouyang, D.; Gao, D.; Qiang, Y.; Zhao, X. Appl. Catal. B 2023, 328 (5), 122491. doi: 10.1016/j.apcatb.2023.122491  doi: 10.1016/j.apcatb.2023.122491

    25. [25]

      Jeong, S. W.; Wang, N.; Kitano, S.; Habazaki, H.; Aoki, Y. Adv. Energy Mater. 2021, 11 (37), 2102025. doi: 10.1002/aenm.202102025  doi: 10.1002/aenm.202102025

    26. [26]

      Zhang, Q.; Chen, Y.; Pan, J.; Daiyan, R.;, Lovell, E.C.; Yun, J.; Amal, R.; Lu, X. Small 2023, 19 (40), 2302338. doi: 10.1002/smll.202302338  doi: 10.1002/smll.202302338

    27. [27]

      Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Carbon 2020, 163 (15), 154. doi: 10.1016/j.carbon.2020.02.084  doi: 10.1016/j.carbon.2020.02.084

    28. [28]

      Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. ACS Sustain. Chem. Eng. 2020, 8 (7), 2883. doi: 10.1021/acssuschemeng.9b07047  doi: 10.1021/acssuschemeng.9b07047

    29. [29]

      Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Nat. Commun. 2023, 14 (1), 6275. doi: 10.1038/s41467-023-41947-7  doi: 10.1038/s41467-023-41947-7

    30. [30]

      Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. J. Am. Chem. Soc. 2023, 145 (21), 11589. doi: 10.1021/jacs.3c00689  doi: 10.1021/jacs.3c00689

    31. [31]

      Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W.; et al. Chem 2020, 6 (6), 1443. doi: 10.1016/j.chempr.2020.04.002  doi: 10.1016/j.chempr.2020.04.002

    32. [32]

      Su, J.; Xiao, B.; Wang, J.; Zhu, X. Sci. Energy Environ. 2024, 1, 4. doi: 10.53941/see.2024.100004  doi: 10.53941/see.2024.100004

    33. [33]

      Liu, H.; Meng, G.; Deng, Z.; Li, M.; Chang, J.; Dai, T.; Fang, X. Acta Phys. -Chim. Sin. 2022, 38 (5), 2008018. doi: 10.3866/PKU.WHXB202008018  doi: 10.3866/PKU.WHXB202008018

    34. [34]

      Yang, S.; Xu, Y.; Hao, Z.; Qin, S.; Zhang, R.; Han, Y.; Du, L.; Zhu, Z.; Du, A.; Chen, X.; et al. Acta Phys. -Chim. Sin. 2023, 39 (5), 2211025. doi: 10.3866/PKU.WHXB202211025  doi: 10.3866/PKU.WHXB202211025

    35. [35]

      Li, Q.; Meng, J.; Li, Z. J. Mater. Chem. A 2022, 10 (15), 8107. doi: 10.1039/D2TA00075J  doi: 10.1039/D2TA00075J

    36. [36]

      Zhao, C.-X.; Liu, J.-N.; Li, B.-Q.; Ren, D.; Chen, X.; Yu, J.; Zhang, Q. Adv. Funct. Mater. 2020, 30 (36), 2003619. doi: 10.1002/adfm.202003619  doi: 10.1002/adfm.202003619

    37. [37]

      Wu, W.; Yan, Y.; Wang, X.; Wei, C.; Yang; Xu, T.; Li, X. J. Mater. Chem. A 2024, 12 (23), 13818. doi: 10.1039/D4TA01430H  doi: 10.1039/D4TA01430H

    38. [38]

      Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.; Wang, R. Chem. Eng. J. 2019, 364 (15), 320. doi: 10.1016/j.cej.2019.01.156  doi: 10.1016/j.cej.2019.01.156

    39. [39]

      Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35 (41), 2303030. doi: 10.1002/adma.202303030  doi: 10.1002/adma.202303030

    40. [40]

      Lv, J.; Xie, J.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. Chem. Soc. Rev. 2022, 51 (4), 1511. doi: 10.1039/D1CS00859E  doi: 10.1039/D1CS00859E

    41. [41]

      Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039. doi: 10.3866/PKU.WHXB202210039  doi: 10.3866/PKU.WHXB202210039

    42. [42]

      Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Adv. Sci. 2021, 8 (15), 2100076. doi: 10.1002/advs.202100076  doi: 10.1002/advs.202100076

    43. [43]

      Han, N.; Zhang, W.; Guo, W.; Pan, H.; Jiang, B.; Xing, L.; Tian, H.; Wang, G.; Zhang, X.; Fransaer, J. Nano Micro Lett. 2023, 15 (1), 185. doi: 10.1007/s40820-023-01152-z  doi: 10.1007/s40820-023-01152-z

    44. [44]

      Alonso-Vante, N. Transition Metal Chalcogenides for Oxygen Reduction. In Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach; Shao, M. Ed.; Springer: London, Britain, 2013; pp. 417–436. doi: 10.1007/978-1-4471-4911-8_14

    45. [45]

      Li, H.; Kelly, S.; Guevarra, D.; Wang, Z.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S.; et al. Nat. Catal. 2021, 4 (6), 463. doi: 10.1038/s41929-021-00618-w  doi: 10.1038/s41929-021-00618-w

    46. [46]

      Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49 (7), 2215. doi: 10.1039/C9CS00869A  doi: 10.1039/C9CS00869A

    47. [47]

      Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Nano Micro Lett. 2023, 15 (1), 122. doi: 10.1007/s40820-023-01067-9  doi: 10.1007/s40820-023-01067-9

    48. [48]

      Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340. doi: 10.1021/acs.chemrev.7b00542  doi: 10.1021/acs.chemrev.7b00542

    49. [49]

      Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. ACS Catal. 2016, 6 (7), 4720. doi: 10.1021/acscatal.6b01581  doi: 10.1021/acscatal.6b01581

    50. [50]

      Lu, H.; Li, X.; Monny, S. A.; Wang, Z.; Wang, L. Chin. J. Catal. 2022, 43 (5), 1204. doi: 10.1016/S1872-2067(21)64028-7  doi: 10.1016/S1872-2067(21)64028-7

    51. [51]

      Wu, T.; Ren, X.; Sun, Y.; Sun, S.; Xian, G.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A.; et al. Nat. Commun. 2021, 12 (1), 3634. doi: 10.1038/s41467-021-23896-1  doi: 10.1038/s41467-021-23896-1

    52. [52]

      Zhang, T.; Ren, X.; Ma, F.; Jiang, X.; Wen, Y.; He, W.; Hao, L.; Zeng, C.; Liu, H.; Chen, R.; et al. Appl. Mater. Today 2023, 34, 101912. doi: 10.1016/j.apmt.2023.101912  doi: 10.1016/j.apmt.2023.101912

    53. [53]

      Wu, Z.; Wang, T.; Zou, J.-J.; Li, Y.; Zhang, C. ACS Catal. 2022, 12 (10), 5911. doi: 10.1021/acscatal.2c01829  doi: 10.1021/acscatal.2c01829

    54. [54]

      Yan, L.; Cheng, X.; Wang, Y.; Wang, Z.; Zheng, L.; Yan, Y.; Lu, Y.; Sun, S.; Qiu, W.; Chen, G. Mater. Today Energy 2022, 24, 100931. doi: 10.1016/j.mtener.2021.100931  doi: 10.1016/j.mtener.2021.100931

    55. [55]

      Wu, J.; Han, Y.; Bai, Y.; Wang, X.; Zhou, Y.; Zhu, W.; He, T.; Wang, Y.; Huang, H.; Liu, Y.; et al. Adv. Funct. Mater. 2022, 32 (32), 2203647. doi: 10.1002/adfm.202203647  doi: 10.1002/adfm.202203647

    56. [56]

      Aveiro, L. R.; da Silva, A. G. M.; Antonin, V. S.; Candido, E. G.; Parreira, L. S.; Geonmonond, R. S.; de Freitas, I. C.; Lanza, M. R. V.; Camargo, P. H. C.; Santos, M. C. Electrochim. Acta 2018, 268, 101. doi: 10.1016/j.electacta.2018.02.077  doi: 10.1016/j.electacta.2018.02.077

    57. [57]

      Li, J.; Wang, N.; Liu, K.; Duan, J.; Hou, B. Colloids Surf. A 2023, 668, 131446. doi: 10.1016/j.colsurfa.2023.131446  doi: 10.1016/j.colsurfa.2023.131446

    58. [58]

      Kumar, S.; Fu, Y.-P. Electrochim. Acta 2023, 447, 142161. doi: 10.1016/j.electacta.2023.142161  doi: 10.1016/j.electacta.2023.142161

    59. [59]

      Zhang, H.; An, Y.; Li, S.; Li, Z.; Geng, D.; Sha, D.; Pan, L.; Qiu, G.; Yan, C. Electrochim. Acta 2023, 463, 142047. doi: 10.1016/j.electacta.2023.142852  doi: 10.1016/j.electacta.2023.142852

    60. [60]

      Ding, L.; Zhao, J.; Bao, Z.; Zhang, S.; Shi, H.; Liu, J.; Wang, G.; Peng, X.; Zhong, X.; Wang, J. J. Mater. Chem. A 2023, 11 (7), 3454. doi: 10.1039/D2TA09450A  doi: 10.1039/D2TA09450A

    61. [61]

      Zhang, S.; Feng, G.; Bao, Z.; Peng, X.; Jiang, C.; Shao, Y.; Wang, S.; Wang, J. Indus. Eng. Chem. Res. 2023, 62 (15), 6113. doi: 10.1021/acs.iecr.3c00262  doi: 10.1021/acs.iecr.3c00262

    62. [62]

      Zhang, Z.; Dong, Q.; Li, P.; Fereja, S. L.; Guo, J.; Fang, Z.; Zhang, X.; Liu, K.; Chen, Z.; Chen, W. J. Phys. Chem. C 2021, 125 (45), 24814. doi: 10.1021/acs.jpcc.1c08140  doi: 10.1021/acs.jpcc.1c08140

    63. [63]

      Liu, C.; Li, H.; Chen, J.; Yu, Z.; Ru, Q.; Li, S.; Henkelman, G.; Wei, L.; Chen, Y. Small 2021, 17 (13), 2007249. doi: 10.1002/smll.202007249  doi: 10.1002/smll.202007249

    64. [64]

      Han, N.; Feng, S.; Guo, W.; Mora, O. M.; Zhao, X.; Zhang, W.; Xie, S.; Zhou, Z.; Liu, Z.; Liu, Q.; et al. SusMat 2022, 2 (4), 456. doi: 10.1002/sus2.71  doi: 10.1002/sus2.71

    65. [65]

      Qian, J.; Liu, W.; Jiang, Y.; Mu, Y.; Cai, Y.; Shi, L.; Zeng, L. ACS Sustain. Chem. Eng. 2022, 10 (43), 14351. doi: 10.1021/acssuschemeng.2c04965  doi: 10.1021/acssuschemeng.2c04965

    66. [66]

      Chen, Z.; Wu, J.; Chen, Z.; Yang, H.; Zou, K.; Zhao, X.; Liang, R.; Dong, X.; Menezes, P. W.; Kang, Z. Angew. Chem. Int. Ed. 2022, 61 (21), e202200086. doi: 10.1002/anie.202200086  doi: 10.1002/anie.202200086

    67. [67]

      Wu, S.; Deng, D.; Wu, J.-C.; Zhu, L.; Yan, C.; Xu, L.; Li, H. ACS Sustain. Chem. Eng. 2024, 12 (1), 216. doi: 10.1021/acssuschemeng.3c05426  doi: 10.1021/acssuschemeng.3c05426

    68. [68]

      Kronka, M. S.; Cordeiro-Junior, P. J. M.; Mira, L.; dos Santos, A. J.; Fortunato, G. V.; Lanza, M. R. V. Mater. Chem. Phys. 2021, 267, 124575. doi: 10.1016/j.matchemphys.2021.124575  doi: 10.1016/j.matchemphys.2021.124575

    69. [69]

      Gao, R.; Pan, L.; Li, Z.; Shi, C.; Yao, Y.; Zhang, X.; Zou, J.-J. Adv. Funct. Mater. 2020, 30 (24), 1910539. doi: 10.1002/adfm.201910539  doi: 10.1002/adfm.201910539

    70. [70]

      Wang, H.; Mu, X.; Mao, Q.; Deng, K.; Yu, H.; Xu, Y.; Wang, Z.; Wang, L. ACS Appl. Nano Mater. 2023, 7 (1), 881. doi: 10.1021/acsanm.3c04938  doi: 10.1021/acsanm.3c04938

    71. [71]

      Yang, T.; Yang, C.; Le, J.; Yu, Z.; Bu, L.; Li, L.; Bai, S.; Shao, Q.; Hu, Z.; Pao, C.-W.; et al. Nano Res. 2022, 15 (3), 1861. doi: 10.1007/s12274-021-3786-0  doi: 10.1007/s12274-021-3786-0

    72. [72]

      Chen, Z.; Liu, G.; Cao, W.; Yang, L.; Zhang, L.; Zhang, S.; Zou, J.; Song, R.; Fan, W.; Luo, S.; et al. Appl. Catal. B 2023, 334, 122825. doi: 10.1016/j.apcatb.2023.122825  doi: 10.1016/j.apcatb.2023.122825

    73. [73]

      Chen, Z.; Liu, G.; Yu, S.; Yang, L.; Zheng, L.; Wei, Z.; Luo, S. Chem. Eng. J. 2023, 474, 145581. doi: 10.1016/j.cej.2023.145581  doi: 10.1016/j.cej.2023.145581

    74. [74]

      Sheng, H.; Hermes, E. D.; Yang, X.; Ying, D.; Janes, A. N.; Li, W.; Schmidt, J. R.; Jin, S. ACS Catal. 2019, 9 (9), 8433. doi: 10.1021/acscatal.9b02546  doi: 10.1021/acscatal.9b02546

    75. [75]

      Liang, J.; Wang, Y.; Liu, Q.; Luo, Y.; Li, T.; Zhao, H.; Lu, S.; Zhang, F.; Asiri, A. M.; Liu, F.; et al. J. Mater. Chem. A 2021, 9 (10), 6117. doi: 10.1039/D0TA12008A  doi: 10.1039/D0TA12008A

    76. [76]

      Zhang, A.; Jiang, Z.; Zhang, S.; Lan, P.; Miao, N.; Chen, W.; Huang, N.; Tian, X.; Liu, Y.; Cai, Z. Appl. Catal., B 2023, 331, 122721. doi: 10.1016/j.apcatb.2023.122721  doi: 10.1016/j.apcatb.2023.122721

    77. [77]

      Zhang, A.; Liu, Y.; Wu, J.; Zhu, J.; Cheng, S.; Wang, Y.; Hao, Y.; Zeng, S. Chem. Eng. J. 2023, 454, 140317. doi: 10.1016/j.cej.2022.140317  doi: 10.1016/j.cej.2022.140317

    78. [78]

      Zhang, C.; Lu, R.; Liu, C.; Lu, J.; Zou, Y.; Yuan, L.; Wang, J.; Wang, G.; Zhao, Y.; Yu, C. Adv. Sci. 2022, 9 (12), 2104768. doi: 10.1002/advs.202104768  doi: 10.1002/advs.202104768

    79. [79]

      Xia, F.; Li, B.; Liu, Y.; Liu, Y.; Gao, S.; Lu, K.; Kaelin, J.; Wang, R.; Marks, T. J.; Cheng, Y. Adv. Funct. Mater. 2021, 31 (47), 2104716. doi: 10.1002/adfm.202104716  doi: 10.1002/adfm.202104716

    80. [80]

      Ross, R. D.; Sheng, H.; Parihar, A.; Huang, J.; Jin, S. ACS Catal. 2021, 11 (20), 12643. doi: 10.1021/acscatal.1c03349  doi: 10.1021/acscatal.1c03349

    81. [81]

      Lee, J.; Choi, S. W.; Back, S.; Jang, H.; Sa, Y. J. Appl. Catal. B 2022, 309, 121265. doi: 10.1016/j.apcatb.2022.121265  doi: 10.1016/j.apcatb.2022.121265

    82. [82]

      Song, M.; Chen, M.; Zhang, C.; Zhang, J.; Liu, W.; Huang, X.; Li, J.; Feng, G.; Wang, D. ACS Appl. Mater. Interfaces 2023, 15 (26), 31375. doi: 10.1021/acsami.3c02793  doi: 10.1021/acsami.3c02793

    83. [83]

      Yang, C.; Bai, S.; Yu, Z.; Feng, Y.; Huang, B.; Lu, Q.; Wu, T.; Sun, M.; Zhu, T.; Cheng, C.; et al. Nano Energy 2021, 89, 106480. doi: 10.1016/j.nanoen.2021.106480  doi: 10.1016/j.nanoen.2021.106480

    84. [84]

      Yu, Z.; Lv, S.; Yao, Q.; Fang, N.; Xu, Y.; Shao, Q.; Pao, C.-W.; Lee, J.-F.; Li, G.; Yang, L.-M.; et al. Adv. Mater. 2022, 35, 2208101. doi: 10.1002/adma.202208101  doi: 10.1002/adma.202208101

    85. [85]

      Yuan, Q.; Zhao, J.; Mok, D. H.; Zheng, Z.; Ye, Y.; Liang, C.; Zhou, L.; Back, S.; Jiang, K. Nano Lett. 2021, 22 (3), 1257. doi: 10.1021/acs.nanolett.1c04420  doi: 10.1021/acs.nanolett.1c04420

    86. [86]

      Wang, J.; Liu, X.; Liao, T.; Ma, C.; Chen, B.; Li, Y.; Fan, X.; Peng, W. Appl. Catal. B 2024, 341, 123344. doi: 10.1016/j.apcatb.2023.123344  doi: 10.1016/j.apcatb.2023.123344

    87. [87]

      Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Energy Environ. Sci. 2020, 13 (11), 4189. doi: 10.1039/d0ee01925a  doi: 10.1039/d0ee01925a

    88. [88]

      Zhang, X.-L.; Su, X.; Zheng, Y.-R.; Hu, S.-J.; Shi, L. Gao, F.-Y.; Yang, P.-P.; Niu, Z.-Z.; Wu, Z.-Z.; Qin, S.; et al. Angew. Chem. Int. Ed. 2021, 60 (52), 26922. doi: 10.1002/anie.202111075  doi: 10.1002/anie.202111075

    89. [89]

      Xie, J.; Zhong, L.; Yang, X.; He, D; Lin, K.; Chen, X.; Wang, H.; Gan, S.; Niu, L. Chin. Chem. Lett. 2024, 35 (1), 108472. doi: 10.1016/j.cclet.2023.108472  doi: 10.1016/j.cclet.2023.108472

    90. [90]

      Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. Nano Res. 2021, 15 (1), 304. doi: 10.1007/s12274-021-3474-0  doi: 10.1007/s12274-021-3474-0

    91. [91]

      Jia, Y.; Xiong, X.; Wang, D.; Duan, X.; Sun, K.; Li, Y.; Zheng, L.; Lin, W.; Dong, M.; Zhang, G.; et al. Nano Micro Lett. 2020, 12 (1), 116. doi: 10.1007/s40820-020-00456-8  doi: 10.1007/s40820-020-00456-8

    92. [92]

      Fan, M.; Yuan, Q.; Zhao, Y.; Wang, Z.; Wang, A.; Liu, Y.; Sun, K.; Wu, J.; Wang, L.; Jiang, J. Adv. Mater. 2022, 34 (13), 2107040. doi: 10.1002/adma.202107040  doi: 10.1002/adma.202107040

    93. [93]

      Ni, B.; Shen, P.; Zhang, G.; Zhao, J.; Ding, H.; Ye, Y.; Yue, Z.; Yang, H.; Wei, H.; Jiang, K. J. Am. Chem. Soc. 2024, 146 (16), 11181. doi: 10.1021/jacs.3c14186  doi: 10.1021/jacs.3c14186

    94. [94]

      Wang, X.-R.; Liu, J.-Y.; Liu, Z.-W.; Wang, W.-C.; Luo, J.; Han, X.-P.; Du, X.-W.; Qiao, S.-Z.; Yang, J. Adv. Mater. 2018, 30, 1800005. doi: 10.1002/adma.201800005  doi: 10.1002/adma.201800005

    95. [95]

      Liu, J.; Song, P.; Ruan, M.; Xu, W. Chin. J. Catal. 2016, 37 (7), 1119. doi: 10.1016/S1872-2067(16)62456-7  doi: 10.1016/S1872-2067(16)62456-7

    96. [96]

      Ji, Y.; Liu, Y.; Zhang, B.-W.; Xu, Z.; Qi, X.; Xu, X.; Ren, L.; Du, Y.; Zhong, J.; Dou, S. X. J. Mater. Chem. A 2021, 9 (37), 21340. doi: 10.1039/d1ta05731f  doi: 10.1039/d1ta05731f

    97. [97]

      Wang, Y.; Huang, H.; Wu, J.; Yang, H.; Kang, Z.; Liu, Y.; Wang, Z.; Menezes, P. W.; Chen, Z. Adv. Sci. 2022, 10 (4), 22053475. doi: 10.1002/advs.202205347  doi: 10.1002/advs.202205347

    98. [98]

      Sheng, H.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Nat. Catal. 2022, 5 (8), 716. doi: 10.1038/s41929-022-00826-y  doi: 10.1038/s41929-022-00826-y

    99. [99]

      Sun, Q.; Xu, G.; Xiong, B.; Chen, L.; Shi, J. Nano Res. 2022, 16 (4), 4729. doi: 10.1007/s12274-022-5160-2  doi: 10.1007/s12274-022-5160-2

    100. [100]

      Sun, X.; Zhu, X.; Wang, Y.; Li, Y. Chin. J. Catal. 2022, 43 (6), 1520. doi: 10.1016/s1872-2067(21)64007-x  doi: 10.1016/s1872-2067(21)64007-x

    101. [101]

      Lee, Y.; Koh, J.; Ahn, H.; Jang, H.; Sa, Y. J. Appl. Surf. Sci. 2024, 647, 158976. doi: 10.1016/j.apsusc.2023.158976  doi: 10.1016/j.apsusc.2023.158976

    102. [102]

      Dhabarde, N.; Ferrer, A.; Tembo, P. M.; Raja, K. S.; Subramanian, V. R. J. Electrochem. Soc. 2023, 170 (1), 016506. doi: 10.1149/1945-7111/acafa5  doi: 10.1149/1945-7111/acafa5

    103. [103]

      Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. J. Mater. Chem. A 2021, 9 (38), 21703. doi: 10.1039/d1ta06313h  doi: 10.1039/d1ta06313h

    104. [104]

      Zhao, X.; Wang, Y.; Da, Y.; Wang, X.; Wang, T.; Xu, M.; He, X.; Zhou, W.; Li, Y.; Coleman, J. N.; et al. Natl. Sci. Rev. 2020, 7 (8), 1360. doi: 10.1093/nsr/nwaa084  doi: 10.1093/nsr/nwaa084

    105. [105]

      Liu, M.; Yang, M.; Shu, X.; Zhang, J. 2021, 37 (9), 2007072. doi: 10.3866/PKU.WHXB202007072

    106. [106]

      Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Joule 2020, 4 (1), 45. doi: 10.1016/j.joule.2019.12.014  doi: 10.1016/j.joule.2019.12.014

    107. [107]

      Chen, Y.; Zhang, S.; Chung-Yen Jung, J.; Zhang, J. Prog. Energy Combust. Sci. 2023, 98, 101101. doi: 10.1016/j.pecs.2023.101101  doi: 10.1016/j.pecs.2023.101101

    108. [108]

      Zhang, D.; Mitchell, E.; Lu, X.; Chu, D.; Shang, L.; Zhang, T.; Amal, R.; Han, Z. Mater. Today 2023, 63, 339. doi: 10.1016/j.mattod.2023.02.004  doi: 10.1016/j.mattod.2023.02.004

    109. [109]

      Hu, J.; Liu, W.; Xin, C.; Guo, J.; Cheng, X.; Wei, J.; Hao, C.; Zhang, G.; Shi, Y. J. Mater. Chem. A 2021, 9 (44), 24803. doi: 10.1039/D1TA06144E  doi: 10.1039/D1TA06144E

    110. [110]

      Jiang, H.; Wang, Y.; Hu, J.; Shai, X.; Zhang, C.; Le, T.; Zhang, L,; Shao, M. Chem. Eng. J. 2023, 452, 139449. doi: 10.1016/j.cej.2022.139449  doi: 10.1016/j.cej.2022.139449

    111. [111]

      Zhang, X.; Ren, K.; Liu, Y.; Gu, Z.; Huang, Z.; Zheng, S.; Wang, X.; Guo, J.; Zatovsky, I. V.; Cao, J.; et al. Acta Phys. -Chim. Sin. 2023, 40 (7), 2307057. doi: 10.3866/PKU.WHXB202307057  doi: 10.3866/PKU.WHXB202307057

    112. [112]

      Mei, X.; Zhao, X.; Chen, Y.; Deng, B.; Geng, Q.; Cao, Y.; Li, Y.; Dong, F. ACS Sustain. Chem. Eng. 2023, 11 (43), 15609. doi: 10.1021/acssuschemeng.3c04194  doi: 10.1021/acssuschemeng.3c04194

    113. [113]

      Chen, Q.; Ma, C.; Yan, S.; Liang, J.; Dong, K.; Luo, Y.; Liu, Q.; Li, T.; Wang, Y.; Yue, L.; et al. ACS Appl. Mater. Interfaces 2021, 13 (39), 46659. doi: 10.1021/acsami.1c13307  doi: 10.1021/acsami.1c13307

    114. [114]

      Zhang, L.; Jiang, S.; Ma, W.; Zhou, Z. Chin. J. Catal. 2022, 43 (6), 1433. doi: 10.1016/S1872-2067(21)63961-X  doi: 10.1016/S1872-2067(21)63961-X

    115. [115]

      Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Adv. Mater. 2019, 31 (13), 1804799. doi: 10.1002/adma.201804799  doi: 10.1002/adma.201804799

    116. [116]

      Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; et al. Adv. Energy Mater. 2021, 11 (37), 2101222. doi: 10.1002/aenm.202101222  doi: 10.1002/aenm.202101222

    117. [117]

      Bhoyate, S. D.; Kim, J.; de Souza, F. M.; Lin, J.; Lee, E.; Kumar, A.; Gupta, R. K. Coord. Chem. Rev. 2023, 474, 214854. doi: 10.1016/j.ccr.2022.214854  doi: 10.1016/j.ccr.2022.214854

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(16)
  • Abstract views(1519)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return