Citation: Zhao Lu,  Hu Lv,  Qinzhuang Liu,  Zhongliao Wang. Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240500. doi: 10.3866/PKU.WHXB202405005 shu

Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting

  • Corresponding author: Zhongliao Wang, wangzl@chnu.edu.cn
  • Received Date: 7 May 2024
    Revised Date: 27 May 2024
    Accepted Date: 28 May 2024

    Fund Project: This work was supported by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083), Shenzhen Science and Technology Program (KCXFZ20211020163816023), Shenzhen Zhongdi Construction Engineering Co., Ltd. cooperation project (22100245), Key Research Project in Natural Sciences for Higher Education Institutions by the Ministry of Education (2022AH050396).

  • Photocatalytic water splitting (PWS) provides an optimal approach for the sustainable production of green hydrogen. NH2-modified covalent triazine frameworks (CTFs-NH2) hold potential in PWS due to robust light uptake, optimal charge separation, and considerable redox potential. However, the high surface reaction barriers hinder the efficiency of PWS owing to the conversion difficulty of intermediate products. Modulating the Lewis basicity of NH2 on CTFs offers a feasible route for addressing this challenge. In this work, electron-donating ethyl (C2H5) and electron-withdrawing 5-fluoroethyl groups (C2F5) are introduced at the para position of amine groups, producing C2H5-CTF-NH2 and C2F5-CTF-NH2, to adjust the Lewis basicity of CTF-NH2. Through DFT calculations, the optical properties, excited states, electronic structures, dipole moments, and surface reaction processes of the CTF-NH2, C2H5-CTF-NH2 and C2F5-CTF-NH2 are simulated. The results indicate that the electron-withdrawing C2F5 group can decrease the electron density and Lewis basicity on NH2, thereby lowering the energy barriers for hydrogen and oxygen evolution reactions, effectively ameliorating the PWS efficiency of CTF-NH2. This work unveils an innovative approach for donor-acceptor-regulated CTFs for the application of PWS.
  • 加载中
    1. [1]

      (1) Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi:10.1016/j.chempr.2022.04.013

    2. [2]

      (2) Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struct. Chem. 2022, 41, 2206048. doi:10.14102/j.cnki.0254-5861.2022-0068

    3. [3]

      (3) Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi:10.14102/j.cnki.0254-5861.2022-0124

    4. [4]

      (4) Gao, H.; Zhang, P.; Qin, H.; Zhang, S.; Guo, J. J. Materiomics 2024, 10, 601. doi:10.1016/j.jmat.2023.08.010

    5. [5]

      (5) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi:10.1002/adma.202203225

    6. [6]

      (6) Van Viet, P.; Nguyen, T.-D.; Bui, D.-P.; Thi, C.M. J. Materiomics 2022, 8, 1. doi:10.1016/j.jmat.2021.06.006

    7. [7]

      (7) Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi:10.1016/j.jmat.2021.02.015

    8. [8]

      (8) Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi:10.14102/j.cnki.0254-5861.2022-0096

    9. [9]

      (9) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; Dong, F. Chin. J. Struct. Chem. 2022, 41, 2206069. doi:10.14102/j.cnki.0254-5861.2022-0103

    10. [10]

      (10) Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi:10.3866/PKU.WHXB202209037

    11. [11]

      (11) Sun, G.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J.; Xu, J. Chem. Eng. J. 2023, 476, 146818. doi:10.1016/j.cej.2023.146818

    12. [12]

      (12) Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/s1872-2067(23)64466-3

    13. [13]

      (13) Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016

    14. [14]

      (14) Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi:10.3866/PKU.WHXB202212016

    15. [15]

      (15) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317

    16. [16]

      (16) Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi:10.1016/j.jmst.2023.06.048

    17. [17]

      (17) Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys. -Chim. Sin. 2023, 39, 202208030. doi:10.3866/PKU.WHXB202208030

    18. [18]

      (18) Wang, X.; Zhang, Y.; Jiang, S.; Su, J.; Song, S. J. Mater. Sci. Technol. 2024, 171, 94. doi:10.1016/j.jmst.2023.06.041

    19. [19]

      (19) Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi:10.1038/s41467-024-45604-5

    20. [20]

      (20) Sun, P.; Zhang, J.; Song, Y.; Mo, Z.; Chen, Z.; Xu, H. Acta Phys. -Chim. Sin. 2024, 40, 2311001. doi:10.3866/PKU.WHXB202311001

    21. [21]

      (21) Wu, Y.; Qu, M.; Jiang, S.; Zhang, J.; Song, S. Sci. China Mater. 2024, 67, 524. doi:10.1007/s40843-023-2760-1

    22. [22]

      (22) Hao, L.; Shen, R.; Qin, C.; Li, N.; Hu, H.; Liang, G.; Li, X. Sci. China Mater. 2024, 67, 504. doi:10.1007/s40843-023-2747-6

    23. [23]

      (23) Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009. doi:10.3866/PKU.WHXB202212009

    24. [24]

      (24) Wang, M.; Wang, P.; Wang, X.; Chen, F.; Yu, H. J. Mater. Sci. Technol. 2024, 174, 168. doi:10.1016/j.jmst.2023.06.065

    25. [25]

      (25) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    26. [26]

      (26) Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi:10.1016/s1872-2067(23)64491-2

    27. [27]

      (27) Liu, D.; Sun, B.; Bai, S.; Gao, T.; Zhou, G. Chin. J. Catal. 2023, 50, 273. doi:10.1016/s1872-2067(23)64462-6

    28. [28]

      (28) Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Acta Phys. -Chim. Sin. 2024, 40, 2312014. doi:10.3866/pku.Whxb202312014

    29. [29]

      (29) Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi:10.3866/PKU.WHXB202307022

    30. [30]

      (30) Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi:10.1016/j.cjsc.2023.100202

    31. [31]

      (31) Wang, G.; Lv, S.; Shen, Y.; Li, W.; Lin, L.; Li, Z. J. Materiomics 2024, 10, 315. doi:10.1016/j.jmat.2023.05.014

    32. [32]

      (32) He, J.; Wang, X.; Jin, S.; Liu, Z.-Q.; Zhu, M. Chin. J. Catal. 2022, 43, 1306. doi:10.1016/s1872-2067(21)63936-0

    33. [33]

      (33) Hao, L.; Shen, R.; Liang, G.; Kang, M.; Huang, C.; Zhang, P.; Li, X. Appl. Catal. B-Environ. Energy 2024, 348, 123837. doi:10.1016/j.apcatb.2024.123837

    34. [34]

      (34) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288

    35. [35]

      (35) Sun, R.; Hu, X.; Shu, C.; Zheng, L.; Wang, S.; Wang, X.; Tan, B. Chin. J. Catal. 2023, 55, 159. doi:10.1016/s1872-2067(23)64552-8

    36. [36]

      (36) Yu, Z.; Yue, X.; Fan, J.; Xiang, Q. ACS Catal. 2022, 12, 6345. doi:10.1021/acscatal.2c01563

    37. [37]

      (37) Wang, N.; Cheng, L.; Liao, Y.; Xiang, Q. Small 2023, 19, 2300109. doi:10.1002/smll.202300109

    38. [38]

      (38) Niu, Q.; Mi, L.; Chen, W.; Li, Q.; Zhong, S.; Yu, Y.; Li, L. Chin. J. Catal. 2023, 50, 45. doi:10.1016/s1872-2067(23)64457-2

    39. [39]

      (39) Shen, R.; Hao, L.; Ng, Y.H.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi:10.1016/s1872-2067(22)64104-4

    40. [40]

      (40) Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi:10.1016/s1872-2067(20)63598-7

    41. [41]

      (41) Huang, G.; Lin, G.; Niu, Q.; Bi, J.; Wu, L. J. Mater. Sci. Technol. 2022, 116, 41. doi:10.1016/j.jmst.2021.11.035

    42. [42]

      (42) Li, Z.; Li, T.; Miao, J.; Zhao, C.; Jing, Y.; Han, F.; Zhang, K.; Yang, X. Sci. China Mater. 2023, 66, 2290. doi:10.1007/s40843-022-2394-6

    43. [43]

      (43) Lu, Z.; Xu, X.; Wang, Z. Sep. Purif. Technol. 2024, 330, 125457. doi:10.1016/j.seppur.2023.125457

    44. [44]

      (44) Huang, T.; Wang, R.; Zhang, J.; Wang, J.; Ge, H.; Ren, J.; Zheng, Z. Chem. Eng. J. 2023, 467, 143469. doi:10.1016/j.cej.2023.143469

    45. [45]

      (45) Ju, Y.; Wang, Z.; Lin, H.; Hou, R.; Li, H.; Wang, Z.; Zhi, R.; Lu, X.; Tang, Y.; Chen, F. Chem. Eng. J. 2024, 479, 147800. doi:10.1016/j.cej.2023.147800

    46. [46]

      (46) Zheng, L.-L.; Zhang, L.-S.; Chen, Y.; Tian, L.; Jiang, X.-H.; Chen, L.-S.; Xing, Q.-J.; Liu, X.-Z.; Wu, D.-S.; Zou, J.-P. Chin. J. Catal. 2022, 43, 811. doi:10.1016/s1872-2067(21)63892-5

    47. [47]

      (47) Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi:10.1007/s40843-023-2770-8

    48. [48]

      (48) Huang, R.; Zhang, Y.; Li, W.; Zhang, W.; Fang, Y.; Zhang, W.; Cui, A.; Ying, Y.; Shi, X. J. Mater. Sci. Technol. 2024, 170, 167. doi:10.1016/j.jmst.2023.05.065

    49. [49]

      (49) Pan, J.; Zhang, A.; Zhang, L.; Dong, P. Chin. J. Catal. 2024, 58, 180. doi:10.1016/s1872-2067(23)64609-1

    50. [50]

      (50) Wang, L.; Cheng, W.; Wang, J.; Yang, J.; Liu, Q. Chin. J. Catal. 2024, 58, 194. doi:10.1016/s1872-2067(23)64602-9

    51. [51]

      (51) Gao, S.; Wan, S.; Yu, J.; Cao, S. Adv. Sustain. Syst. 2022, 7, 2200130. doi:10.1002/adsu.202200130

    52. [52]

      (52) Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi:10.1016/j.cpc.2021.108033

    53. [53]

      (53) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi:10.1002/jcc.22885

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    5. [5]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    19. [19]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(0)
  • Abstract views(57)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return