Citation: Shijie Li, Ke Rong, Xiaoqin Wang, Chuqi Shen, Fang Yang, Qinghong Zhang. Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240300. doi: 10.3866/PKU.WHXB202403005
-
Photocatalytic pollutant removal provides a competitive manner for wastewater purification. The exploration of efficient and durable photocatalysts is significant for this technique. Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy. In comparison to S-scheme junction, photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both, thus holding greater potential. Herein, a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta3N5that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic. The as-prepared carbon quantum dots/CdS/Ta3N5 heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity, with the rate constant (0.0404 min-1) exceeding Ta3N5, CdS/Ta3N5, and CdS by 39.4, 2.1, and 7.2 folds. Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface, which favors the synergistic effect between carbon quantum dots modification and S-scheme junction. This work offers a new way for developing new Ta3N5-based heterojunctions for environmental remediation.
-
-
[1]
(1) Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi:10.1016/j.eehl.2022.04.003
-
[2]
(2) Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Natl. Sci. Open 2022, 1, 20220029. doi:10.1360/nso/20220029
-
[3]
(3) Loffler, P.; Escher, B. I.; Baduel, C.; Virta, M. P.; Lai, F. Y. Environ. Sci. Technol. 2023, 57, 9474. doi:10.1021/acs.est.2c09854
-
[4]
(4) Mangla, D.; Annu; Sharma, A.; Ikram, S. J. Hazard. Mater. 2022, 425, 127946. doi:10.1016/j.jhazmat.2021.127946
-
[5]
(5) Rivadeneira-Mendoza, B. F.; Quiroz-Fernández, L. S.; Silva, F. F. D.; Luque, R.; Balu, A. M.; Rodríguez-Díaz, J. M. Environ. Sci.: Nano 2024, 11, 1543. doi:10.1039/D3EN00843F
-
[6]
(6) Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022, 300, 118922. doi:10.1016/j.envpol.2022.118922
-
[7]
(7) Nikoloudakis, E.; López-Duarte, I.; Georgios Charalambidis; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi:10.1039/d2cs00183g
-
[8]
(8) Khandelwal, A.; Maarisetty, D.; SundarBaral, S. Renew. Sust. Energ. Rev. 2022, 167, 112693. doi:10.1016/j.rser.2022.112693
-
[9]
(9) Thomas, N.; Mathew, S.; Nair, K. M.; O’Dowd, K.; Forouzandeh, P.; Goswami, A.; Mcgranaghan, G.; Pillai, S. C. Mater. Today Sustain. 2021, 13, 100073. doi:10.1016/j.mtsust.2021.100073
-
[10]
(10) Solís, R. R.; Bedia, J.; Rodríguez, J. J.; Belver, C. Chem. Eng. J. 2021, 409, 128110. doi:10.1016/j.cej.2020.128110
-
[11]
(11) Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A. J. Ind. Eng. Chem. 2021, 93, 101. doi:10.1016/j.jiec.2020.09.031
-
[12]
(12) Pornrungroj, C.; Annuar, A. B. M.; Wang, Q.; Rahaman, M.; Bhattacharjee, S.; Andrei, V.; Reisner, E. Nat. Water 2023, 1, 952. doi:10.1038/s44221-023-00139-9
-
[13]
(13) Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi:10.1016/S1872-2067(22)64193-7
-
[14]
(14) Qi, K.; Zhuang, C.; Zhang, M.; Gholami, P.; Khataee, A. J. Mater. Sci. Technol. 2022, 123, 243. doi:10.1016/j.jmst.2022.02.019
-
[15]
(15) Yuan, X.; Li, L.; Shi, Z.; Liang, H.; Li, S.; Qiao, Z. Adv. Powder Mater. 2022, 1, 100026. doi:10.1016/j.apmate.2021.12.002
-
[16]
(16) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi:10.1038/s41893-022-00915-7
-
[17]
(17) Yao, F.; Fang, C.; Cui, J.; Dai, L.; Zhang, X.; Xue, L.; Xiong, P.; Fu, Y.; Zhang, W.; Sun, J.; et al. Natl. Sci. Open 2023, 2, 20220032. doi:10.1360/nso/20220032
-
[18]
(18) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751. doi:10.1021/ja300823a
-
[19]
(19) Actis, A.; Melchionna, M.; Filippini, G.; Fornasiero, P.; Prato, M.; Salvadori, E.; Chiesa, M. Angew. Chem. Int. Ed. 2022, 61, e202210640. doi:10.1002/anie.202210640
-
[20]
(20) Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X. Chin. J. Catal. 2022, 43, 2395. doi:doi:10.1016/S1872-2067(22)64127-5
-
[21]
(21) Liu, J.; Guo, C.; Wu, N.; Li, C.; Qu, R.; Wang, Z.; Jin, R.; Qiao, Y.; He, Z.; Lu, J.; et al. Chem. Eng. J. 2022, 435, 134627. doi:10.1016/j.cej.2022.134627
-
[22]
(22) Zhu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2011005. doi:10.3866/PKU.WHXB202011005
-
[23]
(23) Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; et al. Adv. Powder Mater. 2023, 2, 100094. doi:10.1016/j.apmate.2022.100094
-
[24]
(24) Osotsi, M. I.; Xiong, Y.; Fu, S.; Zhang, W.; Di, Z. Nanoscale 2022, 14, 8130. doi:10.1039/D2NR01424F.
-
[25]
(25) Gao, X.; Yang, N.; Feng, J.; Liao, J.; Hou, S.; Ma, X.; Su, D.; Yu, X.; Yang, Z.; Safaei, J.; Wang, D.; Wang, G. Natl. Sci. Open 2023, 2, 20220037. doi:10.1360/nso/20220037
-
[26]
(26) Khanal, V.; Balayeva, N.; Günnemann, C.; Mamiyev, Z.; Diler, R.; Bahnemann, D.; Subramania, V. Appl. Catal. B 2021, 291, 119974. doi:10.1016/j.apcatb.2021.119974
-
[27]
(27) Wang, Z.; Seo, J.; Hisatomi, T.; Nakabayashi, M.; Xiao, J.; Chen, S.; Lin, L.; Pan, Z.; Krause, M.; Yin, N.; et al. Nano Res. 2022, 16, 4562. doi:10.1007/s12274-022-4732-5
-
[28]
(28) Pihosh, Y.; Nandal, V.; Higashi, T.; Higashi, T. Adv. Energy Mater. 2023, 13, 2301327. doi:10.1002/aenm.202301327
-
[29]
(29) Pihosh, Y.; Nandal, V.; Nandal, V.; Shoji, R.; Bekarevich, R.; Higashi, T.; Nicolosi, V.; Matsuzaki, H.; Seki, K.; Domen, K. ACS Energy Lett. 2023, 8, 2106. doi:10.1021/acsenergylett.3c00539
-
[30]
(30) Dong, B.; Cui, J.; Gao, Y.; Qi, Y.; Zhang, F.; Li, C. Adv. Mater. 2019, 31, 1808185. doi:10.1002/adma.201808185
-
[31]
(31) Wang, L.; Zhang, B.; Rui, Q. ACS Catal. 2018, 8, 10564. doi:10.1021/acscatal.8b03111
-
[32]
(32) Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15, 7969. doi:10.1021/acsami.2c19275
-
[33]
(33) Matsui, Y.; Yamada, T.; Suzuki, S.; Yoshii, T.; Nishihara, H.; Teshima, K. ACS Appl. Energy Mater. 2021, 4, 2690. doi:10.1021/acsaem.0c03231
-
[34]
(34) Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi:10.1038/s41557-022-01093-x
-
[35]
(35) Sepehrmansourie, H.; Alamgholiloo, H.; Pesyan, N. N.; Zolfigol, M. A. Appl. Catal. B 2023, 321, 122082. doi:10.1016/j.apcatb.2022.122082
-
[36]
(36) Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi:10.1016/S1872-2067(21)63843-3
-
[37]
(37) Wei, Z.; Yan, J.; Guo, W.; Shangguan, W. Chin. J. Catal. 2023, 48, 279. doi:10.1016/S1872-2067(23)64414-6
-
[38]
(38) Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 180, 193. doi:10.1016/j.jmst.2023.08.021
-
[39]
(39) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi:10.1016/j.jmst.2022.08.030
-
[40]
(40) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi:10.1016/j.jmst.2023.04.007
-
[41]
(41) Wang, Z.; Sun, Z.; Yin, H.; Wei, H.; Peng, Z.; Pang, Y. X.; Jia, G.; Zhao, H.; Pang, C. H.; Yin, Z. eScience 2023, 3, 100136. doi:10.1016/j.esci.2023.100136
-
[42]
(42) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi:10.1016/j.esci.2023.100095
-
[43]
(43) Huang, W.; Bo, T.; Zuo, S.; Wang, Y.; Chen, J.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. SusMat 2022, 2, 466. doi:10.1002/sus2.76
-
[44]
(44) Zhao, N.; Peng, J.; Wang, J.; Zhai, M. Acta Phys. -Chim. Sin. 2022, 38, 2004046. doi:10.3866/PKU.WHXB202004046
-
[45]
(45) Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim. Sin. 2022, 38, 2107005. doi:10.3866/PKU.WHXB202107005
-
[46]
(46) Xing, Y.; Liu, S. Chin. J. Struc. Chem. 2022, 41, 2209056. doi:10.14102/j.cnki.0254-5861.2022-0188
-
[47]
(47) Fu, W.; Fan, J.; Xiang, Q. Chin. J. Struct. Chem. 2022, 41, 2206039. doi:10.14102/j.cnki.0254-5861.2022-0090
-
[48]
(48) Zhong, W.; Xu, J.; Wang, P.; Zhu, B.; Fan, J.; Yu, H. Chin. J. Catal. 2022, 43, 1074. doi:10.1016/S1872-2067(21)63969-4
-
[49]
(49) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi:10.1007/s42765-022-00189-w
-
[50]
(50) Ma, H.; Zhao, F.; Li, M.; Wang, P.; Fu, Y.; Wang, G.; Liu, X. Adv. Powder Mater. 2023, 2, 100117. doi:10.1016/j.apmate.2023.100117
-
[51]
(51) Muelas-Ramos, V.; Sampaio, M. J.; Silva, C. G.; Bedia, J.; Rodriguez, J. J.; Faria, J. L.; Belver, C. J. Hazard. Mater. 2021, 416, 126199. doi:10.1016/j.jhazmat.2021.126199
-
[52]
(52) Zhu, H.; Zhen, C.; Chen, X.; Feng, S.; Li, B.; Du, Y.; Liu, G.; Cheng, H.-M. Sci. Bull. 2022, 67, 2420. doi:10.1016/j.scib.2022.11.018
-
[53]
(53) Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nat. Energy 2022, 7, 13. doi:10.1038/s41560-021-00919-1
-
[54]
(54) Andrei, V.; Ucoski, G. M.; Pornrungroj, C.; Uswachoke, C.; Wang, Q.; Achilleos, D. S.; Kasap, H.; Sokol, K. P.; Jagt, R. A.; Lu, H.; et al. Nature 2022, 608, 518. doi:10.1038/s41586-022-04978-6
-
[55]
(55) Yan, T.; Zhang, X.; Liu, H.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2201047. doi:10.14102/j.cnki.0254-5861.2021-0057
-
[56]
(56) Lin, G.; Zhang, C.; Xu, X. J. Mater. Sci. Technol. 2024, 154, 241. doi:10.1016/j.jmst.2022.12.069
-
[57]
(57) Das, P. K.; Sivasankaran, R. P.; Arunachalam, M.; Subhash, K. R.; Ha, J.-S.; Ahn, K.-S.; HyungKang, S. Appl. Surf. Sci. 2021, 565, 150456. doi:10.1016/j.apsusc.2021.150456
-
[58]
(58) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668
-
[59]
(59) Wang, C.; You, C.; Rong, K.; Shen, C.; Fang, Y.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2307045. doi:10.3866/PKU.WHXB202307045
-
[60]
(60) Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2310013. doi:10.3866/PKU.WHXB202310013
-
[61]
(61) Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi:10.1016/j.esci.2023.100208
-
[62]
(62) Li, S.; You, C.; Rong, K.; Zhuang, C.; Chen, X.; Zhang, B. Adv. Powder Mater. 2024, 3, 100183. doi:10.1016/j.apmate.2024.100183
-
[63]
(63) Liu, Z.; Fan, S.; Li, X.; Niu, Z.; Wang, J.; Bai, C.; Duan, J.; O.Tadéb, M.; Liu, S. Appl. Catal., B 2023, 327, 122416. doi:10.1016/j.apcatb.2023.122416
-
[64]
(64) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1
-
[65]
(65) Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi:10.3866/PKU.WHXB202302017
-
[66]
(66) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008
-
[67]
(67) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600
-
[68]
(68) Zhang, Z.; Wang, M.; Wang, F. Chem Catal. 2022, 2, 1394. doi:10.1016/j.checat.2022.04.001
-
[69]
(69) He, J.; Hu, L.; Shao, C.; Jiang, S.; Sun, C.; Song, S. ACS Nano 2021, 15, 18006. doi:10.1021/acsnano.1c06524
-
[70]
(70) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317
-
[71]
(71) Li, P.; Yan, X.; Gao, S.; Cao, R. Chem. Eng. J. 2021, 421, 129870. doi:10.1016/j.cej.2021.129870
-
[72]
(72) Zhou, P.; Zhang, Q.; Chao, Y.; Wang, L.; Li, Y.; Chen, H.; Gu, L.; Guo, S. Chem 2021, 7, 1033. doi:10.1016/j.chempr.2021.01.007
-
[73]
(73) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi:10.1016/j.jmst.2023.03.054
-
[74]
(74) Lee, D. E.; Mameda, N.; Reddy, K. P.; Abraham, B. M.; Jo, W. K.; Tonda, S. J Mater. Sci. Technol. 2023, 161, 74. doi:10.1016/j.jmst.2023.03.024
-
[75]
(75) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi:10.1007/s42765-022-00253-5
-
[76]
(76) Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.-H. Chem. Eng. J. 2022, 444, 136609. doi:10.1016/j.cej.2022.136609
-
[77]
(77) González-González, R. B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R. A.; Bilal, M.; Iqbal, H. M. N. J. Hazard. Mater. 2022, 423, 127145. doi:10.1016/j.jhazmat.2021.127145
-
[78]
(78) Akbar, K.; Moretti, E.; Vomiero, A. Adv. Optical Mater. 2021, 9, 2100532. doi:10.1002/adom.202100532
-
[79]
(79) Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. Nat. Nanotechnol. 2022, 17, 112. doi:10.1038/s41565-021-01051-7
-
[80]
(80) Raghavan, A.; Sarkar, S.; Nagappagari, L. R.; Bojja, S.; MuthukondaVenkatakrishnan, S.; Ghosh, S. Ind. Eng. Chem. Res. 2020, 59, 13060. doi:10.1021/acs.iecr.0c01663
-
[81]
(81) Molaei, M. J. Sol. Energy 2020, 196, 549. doi:10.1016/j.solener.2019.12.036
-
[82]
(82) Luo, H.; Guo, Q.; Szilágyi, P. Á.; Jorge, A. B.; Titirici, M.-M. Trends Chem. 2020, 2, 623. doi:10.1016/j.trechm.2020.04.007
-
[83]
(83) Casadevall, C.; Lage, A.; Mu, M.; Greer, H. F.; Antón-García, D.; Butt, J. N.; Jeuken, L. J. C.; Watson, G. W.; García-Melchor, M.; Reisner, E. Nanoscale 2023, 15, 15775. doi:10.1039/d3nr03300g
-
[84]
(84) Arvnd, M.; Hemmati, S. Sens. Actuators B 2017, 238, 346. doi:10.1016/j.snb.2016.07.066
-
[85]
(85) Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi:10.1007/s42765-022-00205-z
-
[86]
(86) Wang, Z.; Li, J.; Qiao, Y.; Liu, X.; Zheng, Y.; Li, Z.; Shen, J.; Zhang, Y.; Zhu, S.; Jiang, H.; et al. Adv. Fiber Mater. 2023, 5, 484. doi:10.1007/s42765-022-00234-8
-
[87]
(87) Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. J. Mater. Sci. Technol. 2022, 124, 164. doi:10.1016/j.jmst.2022.01.030
-
[88]
(88) Fan, Z.; Guo, X.; Yang, M.; Jin, Z. Chin. J. Catal. 2022, 43, 2708. doi:10.1016/S1872-2067(21)64053-6
-
[89]
(89) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi:10.1016/j.nanoms.2022.03.001
-
[90]
(90) Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, doi:10.1016/j.nanoms.2022.11.001
-
[1]
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[3]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[4]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[5]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[6]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[7]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[8]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[9]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[10]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[12]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[13]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[14]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[15]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[17]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[18]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[19]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(77)
- HTML views(12)