Citation: Linfeng Xiao,  Wanlu Ren,  Shishi Shen,  Mengshan Chen,  Runhua Liao,  Yingtang Zhou,  Xibao Li. 调控ZnIn2S4/Bi2O3 S型异质结的电子结构和润湿性增强光催化析氢[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230803. doi: 10.3866/PKU.WHXB202308036 shu

调控ZnIn2S4/Bi2O3 S型异质结的电子结构和润湿性增强光催化析氢

  • Corresponding author: Runhua Liao,  Yingtang Zhou,  Xibao Li, 
  • Received Date: 21 August 2023
    Revised Date: 28 September 2023
    Accepted Date: 28 September 2023

    Fund Project: The project was supported by the Zhejiang Province Key Research and Development Project (2023 C01191), National Natural Science Foundation of China (22262024, 51962023, 51468024), Jiangxi Academic and Technical Leader of Major Disciplines (20232BCJ22008), Natural Science Foundation of Jiangxi Province (20232ACB204007, 20202BABL203037), Jingdezhen Science and Technology Bureau Project (20192GYZD008-33).

  • 通过光催化水裂解制氢来生产可再生燃料具有巨大的潜力。然而,缓慢的析氢动力学和较差的水吸附对光催化剂构成了重大挑战。在这项研究中,我们开发了一种简单的水热法,用于从金属有机框架(MOF)中合成Bi2O3 (BO),并将其负载到花状ZnIn2S4 (ZIS)上。该方法显著增强了水吸附和表面催化反应,从而显著提高了光催化活性。以三乙醇胺(TEOA)作为牺牲剂,在BO上负载15% (质量分数) ZIS时,析氢速率达到了1610 μmol∙h−1∙g−1,是纯BO的6.34倍。此外,利用密度泛函理论(DFT)和从头算分子动力学(AIMD)计算,我们确定了ZIS/BO S型异质结界面上的反应,包括水吸附和催化反应的活性位点。这项工作将为开发具有特定电子性能和润湿性的高性能复合光催化材料提供有价值的见解。
  • 加载中
    1. [1]

      (1) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11), 2107668. doi: 10.1002/adma.202107668

    2. [2]

      (2) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; et al. Chin. J. Struct. Chem. 2022, 41 (4), 69. doi: 10.14102/j.cnki.0254-5861

    3. [3]

      (3) Yi, J.; Zhou, Z.; Xia, Y.; Zhou, G.; Zhang, G.; Li, L.; Wang, X.; Zhu, X.; Wang, X.; Pang, H. Chin. Chem. Lett. 2023, 34 (11), 108328. doi: 10.1016/j.cclet.2023.108328

    4. [4]

      (4) Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2023, 44, 4. doi: 10.1016/S1872-2067(22)64185-8

    5. [5]

      (5) Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42 (5), 743. doi: 10.1016/S1872-2067(20)63695-6

    6. [6]

      (6) Wang, J.; Sun, M.; Liu, C.; Ye, Y.; Chen, M.; Zhao, Z.; Zhang, Y.; Wu, X.; Wang, K.; Zhou, Y. Adv. Mater. 2023, 35, 2306103. doi: 10.1002/adma.202306103

    7. [7]

      (7) Zhang, P.; Tian, Z.; Hung, C.; Liu, Y.; Jia, B.; Lan, K.; Kong, B.; Huang, F.; Mai, L.; Zhao, D. Cell Rep. Phys. Sci. 2020, 1 (7), 100081. doi: 10.1016/j.xcrp.2020.100081

    8. [8]

      (8) Li, Y.; Kidkhunthod, P.; Zhou, Y.; Wang, X.; Lee, J. Adv. Func. Mater. 2022, 32 (41), 2205985. doi: 10.1002/adfm.202205985

    9. [9]

      (9) Sun, L.; Han, L.; Huang, J.; Luo, X.; Li, X. Int. J. Hydrog. Energy 2022, 47 (40), 17583. doi: 10.1016/j.ijhydene.2022.03.259

    10. [10]

      (10) Lei, Y.; Huang, J.; Li, X.; Lv, C.; Hou, C.; Liu, J. Chin. J. Catal. 2022, 43 (8), 2249. doi: 10.1016/S1872-2067(22)64109-3

    11. [11]

      (11) Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder. Mater. 2023, doi: 10.1016/j.apmate.2023.100140

    12. [12]

      (12) Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; Chen, Z.; Zhu, Y. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341

    13. [13]

      (13) Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33 (12), 5200. doi: 10.1016/j.cclet.2022.01.058

    14. [14]

      (14) Zhang, H.; Aierek, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. Carbon Energy 2023, 5 (1), e217. doi: 10.1002/cey2.217

    15. [15]

      (15) Guo, Y.; Yan, B.; Deng, F.; Shao, P.; Zou, J.; Luo, X.; Zhang, S.; Li, X. Chin. Chem. Lett. 2023, 34 (2), 107468. doi: 10.1016/j.cclet.2022.04.066

    16. [16]

      (16) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43 (10), 2652. doi: 10.1016/S1872-2067(22)64106-8

    17. [17]

      (17) Shan, A.; Teng, X.; Zhang, Y.; Zhang, P.; Xu, Y.; Liu, C.; Li, H.; Ye, H.; Wang, R. Nano Energy 2022, 94, 106913. doi: 10.1016/j.nanoen.2021.106913

    18. [18]

    19. [19]

      (19) Wang, K.; Qin, H.; Li, J.; Cheng, Q.; Zhu, Y.; Hu, H.; Peng, J.; Chen, S.; Wang, G.; Chou, S.; et al. Appl. Catal. B 2023, 332, 122763. doi: 10.1016/j.apcatb.2023.122763

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      (23) Zhu, Q.; Hailili, R.; Xin, Y.; Zhou, Y.; Hu, Y.; Pang, X.; Zhang, K.; Robertson, P.; Bahnemann, D.; Wang, C. Appl. Catal. B 2022, 319, 121888. doi: 10.1016/j.apcatb.2022.121888

    24. [24]

      (24) Wang, Y.; Liu, Q.; Wong, N.-H.; Sunarso, J.; Huang, J.; Dai, G.; Hou, X.; Li, X. Ceram. Int. 2022, 48 (2), 2459. doi: 10.1016/j.ceramint.2021.10.027

    25. [25]

      (25) Wang, H.; Liu, J.; Xiao, X.; Meng, H.; Wu, J.; Guo, C.; Zheng, M.; Wang, X.; Guo, S.; Jiang, B. Chin. Chem. Lett. 2023, 34 (1), 107125. doi: 10.1016/j.cclet.2022.01.018

    26. [26]

      (26) Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43 (2), 255. doi: 10.1016/S1872-2067(20)63784-6

    27. [27]

      (27) Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Appl. Catal. B 2017, 202, 620. doi: 10.1016/j.apcatb.2016.09.068

    28. [28]

      (28) Li, X.; Kang, B.; Dong, F.; Deng, F.; Han, L.; Gao, X.; Xu, J.; Hou, X.; Feng, Z.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi: 10.1016/j.apsusc.2022.153422

    29. [29]

      (29) Dai, M.; He, Z.; Cao, W.; Zhang, J.; Chen, W.; Jin, Q.; Que, W.; Wang, S. Sep. Purif. Technol. 2023, 309, 123004. doi: 10.1016/j.seppur.2022.123004

    30. [30]

      (30) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    31. [31]

      (31) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1

    32. [32]

      (32) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35 (26), 2300643. doi: 10.1002/adma.202300643

    33. [33]

      (33) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7 (1), 2100498. doi: 10.1002/adsu.202100498

    34. [34]

      (34) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Func. Mater. 2023, 33 (23), 2214470. doi: 10.1002/adfm.202214470

    35. [35]

    36. [36]

      (36) Wang, Z.; Liu, R.; Zhang, J; Dai, K. Chin. J. Struc. Chem. 2022, 41 (06), 15. doi: 10.14102/j.cnki.0254-5861.2022-0108

    37. [37]

      (37) Liu, Q.; He, X.; Peng, J.; Yu, X.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42 (9), 1478. doi: 10.1016/s1872-2067(20)63753-6

    38. [38]

      (38) Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. doi: 10.1016/j.jtice.2023.104679

    39. [39]

      (39) Li, J.; Li, M.; Jin, Z. J. Colloid Interface Sci. 2021, 592, 237. doi: 10.1016/j.jcis.2021.02.053

    40. [40]

      (40) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 135 (8), e202218688. doi: 10.1002/ange.202218688

    41. [41]

      (41) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35(6), 2209141. doi: 10.1002/adma.202209141

    42. [42]

      (42) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33 (22), 2100317. doi: 10.1002/adma.202100317

    43. [43]

      (43) Wang, Z.; Wang, D.; Deng, F.; Liu, X.; Li, X.; Luo, X.; Peng, Y.; Zhang, J.; Zou, J.; Ding, L.; et al. Chem. Eng. J. 2023, 463, 142313. doi: 10.1016/j.cej.2023.142313

    44. [44]

      (44) Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2), 359. doi: 10.1016/S1872-2067(21)63883-4

    45. [45]

      (45) Peng, Y.; Guo, X.; Xu, S.; Guo, Y.; Zhang, D.; Wang, M.; Wei, G.; Yang, X.; Li, Z.; Zhang, Y.; et al. J. Energy Chem. 2022, 75, 276. doi: 10.1016/j.jechem.2022.06.027

    46. [46]

    47. [47]

      (47) Zheng, J.; Zhou, H.; Zou, Y.; Wang, R.; Lyu, Y.; Jiang, S.; Wang, S. Energy Environ. Sci. 2019, 12 (8), 2345. doi: 10.1039/C9EE00524B

    48. [48]

      (48) Zhang, C.; Guo, Z.; Tian, Y.; Yu, C.; Liu, K.; Jiang, L. Nano Res. Energy 2023, 2 (2), e9120063. doi: 10.26599/NRE.2023.9120063

    49. [49]

      (49) Zhang, H.; Zhou, Y.; Xu, M.; Chen, A.; Ni, Z.; Akdim, O.; Wågberg, T.; Huang, X.; Hu, G. ACS Nano 2023, 17(1), 636. doi: 10.1021/acsnano.2c09880

    50. [50]

      (50) Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.; Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7 (32), 19087. doi: 10.1039/C9TA06219J

    51. [51]

      (51) Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Li, S.; Wang, X.; Chen, M. J. Mater. Sci. Technol. 2021, 94, 10. doi: 10.1016/j.jmst.2021.02.062

    52. [52]

      (52) Chen, J.; Abazari, R.; Adegoke, K.; Maxakato, N.; Bello, O.; Tahir, M.; Tasleem, S.; Sanati, S.; Kirillov, A.; Zhou, Y. Coord. Chem. Rev. 2022, 469, 214664. doi: 10.1016/j.ccr.2022.214664

    53. [53]

      (53) Zhao, X.; Chen, J.; Zhao, C.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Appl. Surf. Sci. 2021, 570, 151183. doi: 10.1016/j.apsusc.2021.151183

    54. [54]

      (54) Zhu, Q.; Dar, A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A.; Wang, C. ACS EST Eng. 2022, 2 (8), 1365. doi: 10.1021/acsestengg.1c00479

    55. [55]

      (55) Zhao, X.; Chen, J.; Bi, Z.; Chen, S.; Feng, L.; Zhou, X.; Zhang, H.; Zhou, Y.; Wågberg, T.; Hu, G. Adv. Sci. 2023, 10 (8), 2205889. doi: 10.1002/advs.202205889

    56. [56]

      (56) Han, L.; Jing, F.; Zhang, J.; Luo, X.; Zhong, Y.; Wang, K.; Zang, S.; Teng, D.; Liu, Y.; Chen, J.; et al. Appl. Catal. B 2021, 282, 119602. doi: 10.1016/j.apcatb.2020.119602

    57. [57]

      (57) Li, Q.; Gao, Y.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. Appl. Catal. B 2022, 303, 120905. doi: 10.1016/j.apcatb.2021.120905

    58. [58]

      (58) Tang, M.; Li, X.; Deng, F.; Han, L.; Xie, Y.; Huang, J.; Chen, Z.; Feng, Z.; Zhou, Y. Catalysts 2023, 13 (3), 634. doi: 10.3390/catal13030634

    59. [59]

      (59) Zhang, J.; Gu, X.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K. Nanomaterials 2023, 13 (2), 305. doi: 10.3390/nano13020305

    60. [60]

      (60) Guan, Y.; Liu, Y.; Lv, Q.; Wu, J. J. Hazard. Mater. 2021, 418, 126280. doi: 10.1016/j.jhazmat.2021.126280

    61. [61]

      (61) Li, L.; Yang, Y.; Li, G.; Zhang, L. Small 2006, 2 (4), 548. doi: 10.1002/smll.200500382

    62. [62]

      (62) Meng, Z.; Qiu, Z.; Shi, Y.; Wang, S.; Zhang, G.; Pi, Y.; Pang, H. eScience 2023, 3 (2), 100092. doi: 10.1016/j.esci.2023.100092

    63. [63]

      (63) Dong, S.; Xia, L.; Chen, X.; Cui, L.; Zhu, W.; Lu, Z.; Sun, J.; Fan, M. Compos. Part B Eng. 2021, 215, 108765. doi: 10.1016/j.compositesb.2021.108765

    64. [64]

      (64) Peng, Z.; Jiang, Y.; Xiao, Y.; Xu, H.; Zhang, W.; Ni, L. Appl. Surf. Sci. 2019, 487, 1084. doi: 10.1016/j.apsusc.2019.05.163

    65. [65]

      (65) Shen, J.; Zai, J.; Yuan, Y.; Qian, X. Int. J. Hydrog. Energy 2012, 37 (12), 16986. doi: 10.1016/j.ijhydene.2012.08.038

    66. [66]

      (66) Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003

    67. [67]

      (67) Zhao, X.; Chen, M.; Zhou, Y.; Zhang, H.; Hu, G. J. Mater. Chem. A 2023, 11 (11), 5830. doi: 10.1039/D2TA09698F

    68. [68]

      (68) Lei, Z.; You, W.; Liu, M.; Zhou, G.; Takata, T.; Hara, M.; Domen, K. Chem. Commun. 2003, 17, 2142. doi: 10.1039/B306813G

    69. [69]

      (69) Xiao, Y.; Jiang, Y.; Liu, X.; Zhang, W.; Zhu, Z.; Gao, Y.; Xu, H.; Zhang, J.; Liu, Z.; Ni, L. J. Mater. Sci. 2020, 55, 14211. doi: 10.1007/s10853-020-05004-8

    70. [70]

      (70) Dong, S.; Zhao, Y.; Yang, J.; Liu, X.; Li, W.; Zhang, L.; Wu, Y.; Sun, J.; Feng, J.; Zhu, Y. Appl. Catal. B 2021, 291, 120127. doi: 10.1016/j.apcatb.2021.120127

    71. [71]

      (71) Lei, Z.; Cao, X.; Fan, J.; Hu, X.; Hu, J.; Li, N.; Sun, T.; Liu, E. Chem. Eng. J. 2023, 457, 141249. doi: 10.1016/j.cej.2022.14124

    72. [72]

      (72) Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D-M.; Sun, J.; Fan, M. J. Hazard. Mater. 2020, 399, 123017. doi: 10.1016/j.jhazmat.2020.123017

    73. [73]

    74. [74]

      (74) Shen, S.; Li, X.; Zhou, Y.; Han, L.; Xie, Y.; Deng, F.; Huang, J.; Chen, Z.; Feng, Z.; Xu, J.; et al. J. Mater. Sci. Technol. 2023, 155, 148. doi: 10.1016/j.jmst.2023.03.006

  • 加载中
    1. [1]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(95)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return