Citation: Linfeng Xiao, Wanlu Ren, Shishi Shen, Mengshan Chen, Runhua Liao, Yingtang Zhou, Xibao Li. 调控ZnIn2S4/Bi2O3 S型异质结的电子结构和润湿性增强光催化析氢[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230803. doi: 10.3866/PKU.WHXB202308036
-
通过光催化水裂解制氢来生产可再生燃料具有巨大的潜力。然而,缓慢的析氢动力学和较差的水吸附对光催化剂构成了重大挑战。在这项研究中,我们开发了一种简单的水热法,用于从金属有机框架(MOF)中合成Bi2O3 (BO),并将其负载到花状ZnIn2S4 (ZIS)上。该方法显著增强了水吸附和表面催化反应,从而显著提高了光催化活性。以三乙醇胺(TEOA)作为牺牲剂,在BO上负载15% (质量分数) ZIS时,析氢速率达到了1610 μmol∙h−1∙g−1,是纯BO的6.34倍。此外,利用密度泛函理论(DFT)和从头算分子动力学(AIMD)计算,我们确定了ZIS/BO S型异质结界面上的反应,包括水吸附和催化反应的活性位点。这项工作将为开发具有特定电子性能和润湿性的高性能复合光催化材料提供有价值的见解。
-
Keywords:
- S-scheme,
- Hydrogen evolution,
- Wettability,
- Photocatalysis,
- Electronic structure
-
-
[1]
(1) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11), 2107668. doi: 10.1002/adma.202107668
-
[2]
(2) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; et al. Chin. J. Struct. Chem. 2022, 41 (4), 69. doi: 10.14102/j.cnki.0254-5861
-
[3]
(3) Yi, J.; Zhou, Z.; Xia, Y.; Zhou, G.; Zhang, G.; Li, L.; Wang, X.; Zhu, X.; Wang, X.; Pang, H. Chin. Chem. Lett. 2023, 34 (11), 108328. doi: 10.1016/j.cclet.2023.108328
-
[4]
(4) Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2023, 44, 4. doi: 10.1016/S1872-2067(22)64185-8
-
[5]
(5) Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42 (5), 743. doi: 10.1016/S1872-2067(20)63695-6
-
[6]
(6) Wang, J.; Sun, M.; Liu, C.; Ye, Y.; Chen, M.; Zhao, Z.; Zhang, Y.; Wu, X.; Wang, K.; Zhou, Y. Adv. Mater. 2023, 35, 2306103. doi: 10.1002/adma.202306103
-
[7]
(7) Zhang, P.; Tian, Z.; Hung, C.; Liu, Y.; Jia, B.; Lan, K.; Kong, B.; Huang, F.; Mai, L.; Zhao, D. Cell Rep. Phys. Sci. 2020, 1 (7), 100081. doi: 10.1016/j.xcrp.2020.100081
-
[8]
(8) Li, Y.; Kidkhunthod, P.; Zhou, Y.; Wang, X.; Lee, J. Adv. Func. Mater. 2022, 32 (41), 2205985. doi: 10.1002/adfm.202205985
-
[9]
(9) Sun, L.; Han, L.; Huang, J.; Luo, X.; Li, X. Int. J. Hydrog. Energy 2022, 47 (40), 17583. doi: 10.1016/j.ijhydene.2022.03.259
-
[10]
(10) Lei, Y.; Huang, J.; Li, X.; Lv, C.; Hou, C.; Liu, J. Chin. J. Catal. 2022, 43 (8), 2249. doi: 10.1016/S1872-2067(22)64109-3
-
[11]
(11) Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder. Mater. 2023, doi: 10.1016/j.apmate.2023.100140
-
[12]
(12) Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; Chen, Z.; Zhu, Y. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341
-
[13]
(13) Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33 (12), 5200. doi: 10.1016/j.cclet.2022.01.058
-
[14]
(14) Zhang, H.; Aierek, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. Carbon Energy 2023, 5 (1), e217. doi: 10.1002/cey2.217
-
[15]
(15) Guo, Y.; Yan, B.; Deng, F.; Shao, P.; Zou, J.; Luo, X.; Zhang, S.; Li, X. Chin. Chem. Lett. 2023, 34 (2), 107468. doi: 10.1016/j.cclet.2022.04.066
-
[16]
(16) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43 (10), 2652. doi: 10.1016/S1872-2067(22)64106-8
-
[17]
(17) Shan, A.; Teng, X.; Zhang, Y.; Zhang, P.; Xu, Y.; Liu, C.; Li, H.; Ye, H.; Wang, R. Nano Energy 2022, 94, 106913. doi: 10.1016/j.nanoen.2021.106913
-
[18]
-
[19]
(19) Wang, K.; Qin, H.; Li, J.; Cheng, Q.; Zhu, Y.; Hu, H.; Peng, J.; Chen, S.; Wang, G.; Chou, S.; et al. Appl. Catal. B 2023, 332, 122763. doi: 10.1016/j.apcatb.2023.122763
-
[20]
-
[21]
-
[22]
-
[23]
(23) Zhu, Q.; Hailili, R.; Xin, Y.; Zhou, Y.; Hu, Y.; Pang, X.; Zhang, K.; Robertson, P.; Bahnemann, D.; Wang, C. Appl. Catal. B 2022, 319, 121888. doi: 10.1016/j.apcatb.2022.121888
-
[24]
(24) Wang, Y.; Liu, Q.; Wong, N.-H.; Sunarso, J.; Huang, J.; Dai, G.; Hou, X.; Li, X. Ceram. Int. 2022, 48 (2), 2459. doi: 10.1016/j.ceramint.2021.10.027
-
[25]
(25) Wang, H.; Liu, J.; Xiao, X.; Meng, H.; Wu, J.; Guo, C.; Zheng, M.; Wang, X.; Guo, S.; Jiang, B. Chin. Chem. Lett. 2023, 34 (1), 107125. doi: 10.1016/j.cclet.2022.01.018
-
[26]
(26) Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43 (2), 255. doi: 10.1016/S1872-2067(20)63784-6
-
[27]
(27) Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Appl. Catal. B 2017, 202, 620. doi: 10.1016/j.apcatb.2016.09.068
-
[28]
(28) Li, X.; Kang, B.; Dong, F.; Deng, F.; Han, L.; Gao, X.; Xu, J.; Hou, X.; Feng, Z.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi: 10.1016/j.apsusc.2022.153422
-
[29]
(29) Dai, M.; He, Z.; Cao, W.; Zhang, J.; Chen, W.; Jin, Q.; Que, W.; Wang, S. Sep. Purif. Technol. 2023, 309, 123004. doi: 10.1016/j.seppur.2022.123004
-
[30]
(30) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003
-
[31]
(31) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1
-
[32]
(32) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35 (26), 2300643. doi: 10.1002/adma.202300643
-
[33]
(33) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7 (1), 2100498. doi: 10.1002/adsu.202100498
-
[34]
(34) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Func. Mater. 2023, 33 (23), 2214470. doi: 10.1002/adfm.202214470
-
[35]
-
[36]
(36) Wang, Z.; Liu, R.; Zhang, J; Dai, K. Chin. J. Struc. Chem. 2022, 41 (06), 15. doi: 10.14102/j.cnki.0254-5861.2022-0108
-
[37]
(37) Liu, Q.; He, X.; Peng, J.; Yu, X.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42 (9), 1478. doi: 10.1016/s1872-2067(20)63753-6
-
[38]
(38) Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. doi: 10.1016/j.jtice.2023.104679
-
[39]
(39) Li, J.; Li, M.; Jin, Z. J. Colloid Interface Sci. 2021, 592, 237. doi: 10.1016/j.jcis.2021.02.053
-
[40]
(40) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 135 (8), e202218688. doi: 10.1002/ange.202218688
-
[41]
(41) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35(6), 2209141. doi: 10.1002/adma.202209141
-
[42]
(42) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33 (22), 2100317. doi: 10.1002/adma.202100317
-
[43]
(43) Wang, Z.; Wang, D.; Deng, F.; Liu, X.; Li, X.; Luo, X.; Peng, Y.; Zhang, J.; Zou, J.; Ding, L.; et al. Chem. Eng. J. 2023, 463, 142313. doi: 10.1016/j.cej.2023.142313
-
[44]
(44) Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2), 359. doi: 10.1016/S1872-2067(21)63883-4
-
[45]
(45) Peng, Y.; Guo, X.; Xu, S.; Guo, Y.; Zhang, D.; Wang, M.; Wei, G.; Yang, X.; Li, Z.; Zhang, Y.; et al. J. Energy Chem. 2022, 75, 276. doi: 10.1016/j.jechem.2022.06.027
-
[46]
-
[47]
(47) Zheng, J.; Zhou, H.; Zou, Y.; Wang, R.; Lyu, Y.; Jiang, S.; Wang, S. Energy Environ. Sci. 2019, 12 (8), 2345. doi: 10.1039/C9EE00524B
-
[48]
(48) Zhang, C.; Guo, Z.; Tian, Y.; Yu, C.; Liu, K.; Jiang, L. Nano Res. Energy 2023, 2 (2), e9120063. doi: 10.26599/NRE.2023.9120063
-
[49]
(49) Zhang, H.; Zhou, Y.; Xu, M.; Chen, A.; Ni, Z.; Akdim, O.; Wågberg, T.; Huang, X.; Hu, G. ACS Nano 2023, 17(1), 636. doi: 10.1021/acsnano.2c09880
-
[50]
(50) Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.; Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7 (32), 19087. doi: 10.1039/C9TA06219J
-
[51]
(51) Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Li, S.; Wang, X.; Chen, M. J. Mater. Sci. Technol. 2021, 94, 10. doi: 10.1016/j.jmst.2021.02.062
-
[52]
(52) Chen, J.; Abazari, R.; Adegoke, K.; Maxakato, N.; Bello, O.; Tahir, M.; Tasleem, S.; Sanati, S.; Kirillov, A.; Zhou, Y. Coord. Chem. Rev. 2022, 469, 214664. doi: 10.1016/j.ccr.2022.214664
-
[53]
(53) Zhao, X.; Chen, J.; Zhao, C.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Appl. Surf. Sci. 2021, 570, 151183. doi: 10.1016/j.apsusc.2021.151183
-
[54]
(54) Zhu, Q.; Dar, A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A.; Wang, C. ACS EST Eng. 2022, 2 (8), 1365. doi: 10.1021/acsestengg.1c00479
-
[55]
(55) Zhao, X.; Chen, J.; Bi, Z.; Chen, S.; Feng, L.; Zhou, X.; Zhang, H.; Zhou, Y.; Wågberg, T.; Hu, G. Adv. Sci. 2023, 10 (8), 2205889. doi: 10.1002/advs.202205889
-
[56]
(56) Han, L.; Jing, F.; Zhang, J.; Luo, X.; Zhong, Y.; Wang, K.; Zang, S.; Teng, D.; Liu, Y.; Chen, J.; et al. Appl. Catal. B 2021, 282, 119602. doi: 10.1016/j.apcatb.2020.119602
-
[57]
(57) Li, Q.; Gao, Y.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. Appl. Catal. B 2022, 303, 120905. doi: 10.1016/j.apcatb.2021.120905
-
[58]
(58) Tang, M.; Li, X.; Deng, F.; Han, L.; Xie, Y.; Huang, J.; Chen, Z.; Feng, Z.; Zhou, Y. Catalysts 2023, 13 (3), 634. doi: 10.3390/catal13030634
-
[59]
(59) Zhang, J.; Gu, X.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K. Nanomaterials 2023, 13 (2), 305. doi: 10.3390/nano13020305
-
[60]
(60) Guan, Y.; Liu, Y.; Lv, Q.; Wu, J. J. Hazard. Mater. 2021, 418, 126280. doi: 10.1016/j.jhazmat.2021.126280
-
[61]
(61) Li, L.; Yang, Y.; Li, G.; Zhang, L. Small 2006, 2 (4), 548. doi: 10.1002/smll.200500382
-
[62]
(62) Meng, Z.; Qiu, Z.; Shi, Y.; Wang, S.; Zhang, G.; Pi, Y.; Pang, H. eScience 2023, 3 (2), 100092. doi: 10.1016/j.esci.2023.100092
-
[63]
(63) Dong, S.; Xia, L.; Chen, X.; Cui, L.; Zhu, W.; Lu, Z.; Sun, J.; Fan, M. Compos. Part B Eng. 2021, 215, 108765. doi: 10.1016/j.compositesb.2021.108765
-
[64]
(64) Peng, Z.; Jiang, Y.; Xiao, Y.; Xu, H.; Zhang, W.; Ni, L. Appl. Surf. Sci. 2019, 487, 1084. doi: 10.1016/j.apsusc.2019.05.163
-
[65]
(65) Shen, J.; Zai, J.; Yuan, Y.; Qian, X. Int. J. Hydrog. Energy 2012, 37 (12), 16986. doi: 10.1016/j.ijhydene.2012.08.038
-
[66]
(66) Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003
-
[67]
(67) Zhao, X.; Chen, M.; Zhou, Y.; Zhang, H.; Hu, G. J. Mater. Chem. A 2023, 11 (11), 5830. doi: 10.1039/D2TA09698F
-
[68]
(68) Lei, Z.; You, W.; Liu, M.; Zhou, G.; Takata, T.; Hara, M.; Domen, K. Chem. Commun. 2003, 17, 2142. doi: 10.1039/B306813G
-
[69]
(69) Xiao, Y.; Jiang, Y.; Liu, X.; Zhang, W.; Zhu, Z.; Gao, Y.; Xu, H.; Zhang, J.; Liu, Z.; Ni, L. J. Mater. Sci. 2020, 55, 14211. doi: 10.1007/s10853-020-05004-8
-
[70]
(70) Dong, S.; Zhao, Y.; Yang, J.; Liu, X.; Li, W.; Zhang, L.; Wu, Y.; Sun, J.; Feng, J.; Zhu, Y. Appl. Catal. B 2021, 291, 120127. doi: 10.1016/j.apcatb.2021.120127
-
[71]
(71) Lei, Z.; Cao, X.; Fan, J.; Hu, X.; Hu, J.; Li, N.; Sun, T.; Liu, E. Chem. Eng. J. 2023, 457, 141249. doi: 10.1016/j.cej.2022.14124
-
[72]
(72) Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D-M.; Sun, J.; Fan, M. J. Hazard. Mater. 2020, 399, 123017. doi: 10.1016/j.jhazmat.2020.123017
-
[73]
-
[74]
(74) Shen, S.; Li, X.; Zhou, Y.; Han, L.; Xie, Y.; Deng, F.; Huang, J.; Chen, Z.; Feng, Z.; Xu, J.; et al. J. Mater. Sci. Technol. 2023, 155, 148. doi: 10.1016/j.jmst.2023.03.006
-
[1]
-
-
[1]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[2]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[3]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[4]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[5]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[10]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[11]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[12]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[13]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[14]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[18]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[19]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(95)
- HTML views(7)