Citation: Zehao Zhang,  Zheng Wang,  Haibo Li. V2CFx MXene衍生2D V2O3@介孔碳纳米片的制备及其电容脱盐特性[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308020 shu

V2CFx MXene衍生2D V2O3@介孔碳纳米片的制备及其电容脱盐特性

  • Corresponding author: Zheng Wang,  Haibo Li, 
  • Received Date: 15 August 2023
    Revised Date: 10 September 2023
    Accepted Date: 12 September 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22272085, 22169015).

  • 采用同源金属V2CFx MXene作为前驱体制备了三氧化二钒@多孔碳(V2O3@porous carbon,V2O3@PC)纳米片作为电容去离子(CDI)阳极,研究其脱盐特性。实验探究了在不同在碳化温度下V2O3@PC的结构、结晶度、润湿性、石墨化程度和电化学特性。研究表明,所制备的V2O3@PC呈现出典型的2D纳米片结构,高结晶度的V2O3纳米颗粒被高石墨化度的PC牢牢束缚。这种结构具有良好的界面润湿性和高导电性,因而可以促进电解质的渗透,加速界面电荷的转移以并促进盐离子的传输和扩散。此外,PC也能较好的抑制V2O3在多次循环后的体积膨胀。电化学结果表明,V的可逆电化学转化在一定程度上提高了Na+的储存。当电压为1.2 V时,NaCl电导率为1000 μS·cm−1时,优化后的V2O3@PC电极具有高达2.20 mmol∙g−1的脱盐容量,0.13 mmol∙g−1∙min−1的脱盐速率,62%的水回收率以及24.0 Wh∙m−3的低能耗。
  • 加载中
    1. [1]

      (1) Jin, Z.; Zhang, M.; Mei, H.; Liu, H.; Pan, L.; Yan, Y.; Cheng, L.; Zhang, L. Carbon 2023, 202, 159. doi: 10.1016/j.carbon.2022.11.035

    2. [2]

      (2) Qiu, X.; Kong, H.; Li, Y.; Wang, Q.; Wang, Y. ACS Appl. Mater. Interfaces 2022, 14 (49), 54855. doi: 10.1021/acsami.2c15997

    3. [3]

      (3) Lu, Z.; Wei, Y.; Deng, J.; Ding, L.; Li, Z.-K.; Wang, H. ACS Nano 2019, 13 (9), 10535. doi: 10.1021/acsnano.9b04612

    4. [4]

      (4) Lei, J.; Xiong, Y.; Yu, F.; Ma, J. Chem. Eng. J. 2022, 437, 135381. doi: 10.1016/j.cej.2022.135381

    5. [5]

      (5) Wang, K.; Liu, Y.; Xu, X.; Jiao, Y.; Pan, L. Chem. Eng. J. 2023, 463, 142394. doi: 10.1016/j.cej.2023.142394

    6. [6]

      (6) Tu, X.; Liu, Y.; Wang, K.; Ding, Z.; Xu, X.; Lu, T.; Pan, L. J. Colloid Interface Sci. 2023, 642, 680. doi: 10.1016/j.jcis.2023.04.007

    7. [7]

    8. [8]

      (8) Jiang, Z. Y.; Yang, M.; Wang, Q.; Qu, Z. G.; Zhang, J. F. Desalination 2023, 548, 116274. doi: 10.1016/j.desal.2022.116274

    9. [9]

      (9) Sivasubramanian, P.; Kumar, M.; Kirankumar, V. S.; Samuel, M. S.; Dong, C.-D.; Chang, J.-H. Desalination 2023, 559, 116652. doi: 10.1016/j.desal.2023.116652

    10. [10]

      (10) Sui, Z.; Liu, W.; Xu, X.; Liu, Y.; Tian, Q. Diamond Relat. Mater. 2020, 104, 107758. doi: 10.1016/j.diamond.2020.107758

    11. [11]

      (11) Liu, Y.; Gao, X.; Wang, K.; Dou, X.; Zhu, H.; Yuan, X.; Pan, L. J. Mater. Chem. A 2020, 8 (17), 8476. doi: 10.1039/C9TA14112J

    12. [12]

      (12) Li, Q.; Xu, X.; Guo, J.; Hill, J. P.; Xu, H.; Xiang, L.; Li, C.; Yamauchi, Y.; Mai, Y. Angew. Chem. Int. Ed. 2021, 60 (51), 26528. doi: 10.1002/anie.202111823

    13. [13]

      (13) Wang, G.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2020, 54 (13), 8411. doi: 10.1021/acs.est.0c01518

    14. [14]

      (14) Xu, H.; Li, M.; Gong, S.; Zhao, F.; Zhao, Y.; Li, C.; Qi, J.; Wang, Z.; Wang, H.; Fan, X.; et al. J. Colloid Interface Sci. 2022, 624, 233. doi: 10.1016/j.jcis.2022.05.131

    15. [15]

      (15) Geng, X.; Kuai, J.; Ren, X.; Guo, W. Water Sci. Technol. 2022, 86 (11), 3014. doi: 10.2166/wst.2022.383

    16. [16]

      (16) He, D.; Wong, C. E.; Tang, W.; Kovalsky, P.; Waite, T. D. Environ. Sci. Technol. Lett. 2016, 3 (5), 222. doi: 10.1021/acs.estlett.6b00124

    17. [17]

      (17) Liu, Q.; Hu, Z.; Li, W.; Zou, C.; Jin, H.; Wang, S.; Chou, S.; Dou, S.-X. Energy Environ. Sci. 2021, 14 (1), 15. doi: 10.1039/D0EE02997A

    18. [18]

      (18) Ahn, C.; Cavalleri, A.; Georges, A.; Ismail-Beigi, S.; Millis, A. J.; Triscone, J.-M. Nat. Mater. 2021, 20 (11), 1462. doi: 10.1038/s41563-021-00989-2

    19. [19]

      (19) Cao, D.; Zheng, L.; Li, Q.; Zhang, J.; Dong, Y.; Yue, J.; Wang, X.; Bai, Y.; Tan, G.; Wu, C. Nano Lett. 2021, 21 (12), 5225. doi: 10.1021/acs.nanolett.1c01276

    20. [20]

      (20) Hu, M.; Yang, W.; Tan, H.; Jin, L.; Zhang, L.; Kerns, P.; Dang, Y.; Dissanayake, S.; Schaefer, S.; Liu, B.; et al. Matter 2020, 2 (5), 1244. doi: 10.1016/j.matt.2020.02.002

    21. [21]

      (21) Li, B.; Wang, Y.; Jiang, N.; An, L.; Song, J.; Zuo, Y.; Ning, F.; Shang, H.; Xia, D. Nano Energy 2020, 72, 104727. doi: 10.1016/j.nanoen.2020.104727

    22. [22]

      (22) Ding, Y.; Peng, Y.; Chen, S.; Zhang, X.; Li, Z.; Zhu, L.; Mo, L.-E.; Hu, L. ACS Appl. Mater. Interfaces 2019, 11 (47), 44109. doi: 10.1021/acsami.9b13729

    23. [23]

      (23) Zhu, K.; Wei, S.; Shou, H.; Shen, F.; Chen, S.; Zhang, P.; Wang, C.; Cao, Y.; Guo, X.; Luo, M.; et al. Nat. Commun. 2021, 12 (1), 6878. doi: 10.1038/s41467-021-27203-w

    24. [24]

      (24) Ren, X.; Ai, D.; Zhan, C.; Lv, R.; Kang, F.; Huang, Z.-H. Electrochim. Acta 2019, 318, 730. doi: 10.1016/j.electacta.2019.06.138

    25. [25]

      (25) Fonseca, J.; Gong, T.; Jiao, L.; Jiang, H.-L. J. Mater. Chem. A 2021, 9 (17), 10562. doi: 10.1039/D1TA01043C

    26. [26]

      (26) Gu, Y.; Wu, Y.-n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Angew. Chem. Int. Ed. 2017, 56 (49), 15658. doi: 10.1002/anie.201709738

    27. [27]

      (27) Guo, Y.; Wang, W.; Lei, H.; Wang, M.; Jiao, S. Adv. Mater. 2022, 34 (13), 2110109. doi: 10.1002/adma.202110109

    28. [28]

    29. [29]

    30. [30]

      (30) Wang, Y.; Guo, T.; Alhajji, E.; Tian, Z.; Shi, Z.; Zhang, Y.-Z.; Alshareef, H. N. Adv. Energy Mater. 2023, 13 (4), 2202860. doi: 10.1002/aenm.202202860

    31. [31]

      (31) An, Y.; Tian, Y.; Feng, J.; Qian, Y. Mater. Today 2022, 57, 146. doi: 10.1016/j.mattod.2022.06.006

    32. [32]

      (32) Wang, W.; Li, H. J. Liaocheng Univ. 2023, 36 (3), 82. doi: 10.19728/j.issn1672-6634.2023010004

    33. [33]

      (33) Xi, W.; Li, H. J. Inorg. Mater. 2021, 36 (3), 283. doi: 10.15541/jim20200243

    34. [34]

      (34) Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. ACS Nano 2020, 14 (1), 541. doi: 10.1021/acsnano.9b06866

    35. [35]

      (35) Chen, L.; Sun, Y.; Wei, X.; Song, L.; Tao, G.; Cao, X.; Wang, D.; Zhou, G.; Song, Y. Adv. Mater. 2023, 35 (26), 2300771. doi: 10.1002/adma.202300771

    36. [36]

      (36) Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. Adv. Energy Mater. 2020, 10 (36), 2001791. doi: 10.1002/aenm.202001791

    37. [37]

      (37) Jin, T.; Li, H.; Li, Y.; Jiao, L.; Chen, J. Nano Energy 2018, 50, 462. doi: 10.1016/j.nanoen.2018.05.056

    38. [38]

      (38) Kim, J.-H.; Kim, Y.-S.; Moon, S.-H.; Park, D.-H.; Kim, M.-C.; Choi, J.-H.; Shin, J.-H.; Park, K.-W. Electrochim. Acta 2021, 389, 138685. doi: 10.1016/j.electacta.2021.138685

    39. [39]

      (39) Zhang, Z.; Li, H. Chem. Eng. J. 2022, 447, 137438. doi: 10.1016/j.cej.2022.137438

    40. [40]

      (40) Zhang, Z.; Li, H. Appl. Surf. Sci. 2020, 514, 145920. doi: 10.1016/j.apsusc.2020.145920

    41. [41]

      (41) Zhang, N.; Feng, X.; Rao, D.; Deng, X.; Cai, L.; Qiu, B.; Long, R.; Xiong, Y.; Lu, Y.; Chai, Y. Nat. Commun. 2020, 11 (1), 4066. doi: 10.1038/s41467-020-17934-7

    42. [42]

      (42) Lu, C.; Yang, L.; Yan, B.; Sun, L.; Zhang, P.; Zhang, W.; Sun, Z. Adv. Funct. Mater. 2020, 30 (47), 2000852. doi: 10.1002/adfm.202000852

    43. [43]

      (43) Chen, Z.; Xu, X.; Wang, K.; Meng, F.; Lu, T.; Pan, L. Desalination 2023, 564, 116733. doi: 10.1016/j.desal.2023.116733

    44. [44]

      (44) Liu, Y.; Du, X.; Wang, Z.; Zhang, L.; Chen, Q.; Wang, L.; Liu, Z.; Dou, X.; Zhu, H.; Yuan, X. Desalination 2021, 520, 115376. doi: 10.1016/j.desal.2021.115376

    45. [45]

      (45) Han, J.; Yan, T.; Shen, J.; Shi, L.; Zhang, J.; Zhang, D. Environ. Sci. Technol. 2019, 53 (21), 12668. doi: 10.1021/acs.est.9b04274

    46. [46]

      (46) Liu, Y.; Gao, X.; Zhang, L.; Shen, X.; Du, X.; Dou, X.; Yuan, X. Desalination 2020, 494, 114665. doi: 10.1016/j.desal.2020.114665

    47. [47]

      (47) El-Deen, A. G.; Choi, J.-H.; Kim, C. S.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. M. Desalination 2015, 361, 53. doi: 10.1016/j.desal.2015.01.033

    48. [48]

      (48) Wang, W.; Liu, Z.; Zhang, Z.; Li, H. Glob. Chall. 2022, 6 (2), 2100095. doi: 10.1002/gch2.202100095

    49. [49]

      (49) Guo, L.; Mo, R.; Shi, W.; Huang, Y.; Leong, Z. Y.; Ding, M.; Chen, F.; Yang, H. Y. Nanoscale 2017, 9 (35), 13305. doi: 10.1039/C7NR03579A

    50. [50]

      (50) Kim, S.; Lee, J.; Kim, C.; Yoon, J. Electrochim. Acta 2016, 203, 265. doi: 10.1016/j.electacta.2016.04.056

    51. [51]

      (51) Lee, J.; Kim, S.; Kim, C.; Yoon, J. Energy Environ. Sci. 2014, 7 (11), 3683. doi: 10.1039/C4EE02378A

    52. [52]

      (52) Xi, W.; Li, H. Environ. Sci.: Nano 2020, 7 (3), 764. doi: 10.1039/C9EN01238A

    53. [53]

      (53) Han, J.; Shi, L.; Yan, T.; Zhang, J.; Zhang, D. Environ. Sci.: Nano 2018, 5 (10), 2337. doi: 10.1039/C8EN00652K

    54. [54]

      (54) Li, Y.; Yin, Y.; Xie, F.; Zhao, G.; Han, L.; Zhang, L.; Lu, T.; Amin, M. A.; Yamauchi, Y.; Xu, X.; et al. Environ. Res. 2022, 212, 113331. doi: 10.1016/j.envres.2022.113331

    55. [55]

      (55) Halabaso, E. R.; Salvacion, J. W. L.; Kuncoro, E. P.; Doong, R.-A. Environ. Sci.: Nano 2021, 8 (10), 2844. doi: 10.1039/D1EN00514F

    56. [56]

      (56) Liu, B.; Yu, L.; Yu, F.; Ma, J. Desalination 2021, 500, 114897. doi: 10.1016/j.desal.2020.114897

    57. [57]

      (57) Min, X.-B.; Liu, F.-S.; Wang, Y.-Y.; Yan, Y.-Q.; Wang, H.-Y. J. Cent. South Univ. 2022, 29 (2), 359. doi: 10.1007/s11771-022-4893-0

    58. [58]

      (58) Cai, Y.; Wang, Y.; Fang, R.; Wang, J. Sep. Purif. Technol. 2022, 280, 119828. doi: 10.1016/j.seppur.2021.119828

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(0)
  • Abstract views(101)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return