Citation:
Wentao Xu, Xuyan Mo, Yang Zhou, Zuxian Weng, Kunling Mo, Yanhua Wu, Xinlin Jiang, Dan Li, Tangqi Lan, Huan Wen, Fuqin Zheng, Youjun Fan, Wei Chen. 双金属浸出诱导催化剂重构用于高活性和高稳定性电化学水氧化[J]. Acta Physico-Chimica Sinica,
;2024, 40(8): 230800.
doi:
10.3866/PKU.WHXB202308003
-
析氧反应(OER)催化剂在催化反应过程中不可避免地会发生表面重构,这一过程使得设计、构筑高性能和高稳定性的OER电催化剂充满挑战。在此,我们采用双金属浸出诱导表面重构的策略,构建了高活性和高稳定性的水氧化电催化剂。在该策略中,通过水热、离子交换和后续的退火工艺处理,将由α-CoMoO4、K2Co2(MoO4)3、Co3O4和CoFe2O4四种氧化物晶相组成的材料阵列转换为OER预催化剂。原位电化学拉曼光谱和非原位X射线衍射(XRD)分析表明,其中的不稳定成分K2Co2(MoO4)3的快速溶解引发了Mo和K的适度浸出,从而在低电压下加速了表面富集的α-Co(OH)2向CoOOH活性相的转化。此外,CoFe2O4相耦合重构产生新相CoO与无定形层CoOOH,从而形成了CoFe2O4@CoO@CoOOH紧密的多相结构,起到了“纳米栅栏”的作用,可有效防止催化剂的过度重构,从而赋予重构后的催化剂优异的催化活性和稳定性。本工作为设计高电流密度下具有优异活性和稳定性的OER催化剂提供了新的思路。
-
-
-
[1]
(1) Jia, Y.; Zhang, L.; Zhuang, L.; Liu, H.; Yan, X.; Wang, X.; Liu, J.; Wang, J.; Zheng, Y.; Xiao, Z.; et al. Nat. Catal. 2019, 2, 688. doi: 10.1038/s41929-019-0297-4
-
[2]
(2) Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Resour. Conserv. Recycl. 2022, 176, 105959. doi: 10.1016/j.resconrec.2021.105959
-
[3]
(3) Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599
-
[4]
(4) Su, Z.; Huang, Q.; Guo, Q.; Hoseini, S.; Zheng, F.; Chen, W. Nano Res. Energy 2023, 2, e9120078. doi: 10.26599/NRE.2023.9120078
-
[5]
(5) Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9, 457. doi: 10.1038/nchem.2695
-
[6]
(6) McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w
-
[7]
(7) Xu, W.; Wu, K.; Wu, Y.; Guo, Q.; Fan, F.; Li, A.; Yang, L.; Zheng, F.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 439, 141712. doi: 10.1016/j.electacta.2022.141712
-
[8]
(8) Fan, F.; Huang, Q.; Devasenathipathy, R.; Peng, X.; Yang, F.; Liu, X.; Wang, L.; Chen, D.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 437, 141514. doi: 10.1016/j.electacta.2022.141514
-
[9]
(9) Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Adv. Mater. 2019, 31, 1807134. doi: 10.1002/adma.201807134
-
[10]
(10) Fan, F.; Hui, Y.; Devasenathipathy, R.; Peng, X.; Huang, Q.; Xu, W.; Yang, F.; Liu, X.; Wang, L.; Fan, Y.; et al. J. Colloid Interface Sci. 2023, 636, 450. doi: 10.1016/j.jcis.2023.01.039
-
[11]
(11) Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Science 2016, 352, 333. doi: 10.1126/science.aaf1525
-
[12]
(12) Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; et al. Angew. Chem. Int. Ed. 2016, 55, 12465. doi: 10.1002/anie.201606313
-
[13]
(13) Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 6517. doi: 10.1021/jacs.6b01606
-
[14]
(14) Xu, Q.; Jiang, H.; Duan, X.; Jiang, Z.; Hu, Y.; Boettcher, S. W.; Zhang, W.; Guo, S.; Li, C. Nano Lett. 2021, 21, 492. doi: 10.1021/acs.nanolett.0c03950
-
[15]
(15) Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B.-J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. Nat. Mater. 2017, 16, 925. doi: 10.1038/nmat4938
-
[16]
(16) Ren, X.; Wei, C.; Sun, Y.; Liu, X.; Meng, F.; Meng, X.; Sun, S.; Xi, S.; Du, Y.; Bi, Z.; et al. Adv. Mater. 2020, 32, 2001292. doi: 10.1002/adma.202001292
-
[17]
(17) Bai, J.; Mei, J.; Liao, T.; Sun, Q.; Chen, Z.-G.; Sun, Z. Adv. Energy Mater. 2022, 12, 2103247. doi: 10.1002/aenm.202103247
-
[18]
(18) Xiong, L.; Qiu, Y.; Peng, X.; Liu, Z.; Chu, P. K. Nano Energy 2022, 104, 107882. doi: 10.1016/j.nanoen.2022.107882
-
[19]
(19) Guo, Y.; Tang, J.; Wang, Z.; Sugahara, Y.; Yamauchi, Y. Small 2018, 14, 1802442. doi: 10.1002/smll.201802442
-
[20]
(20) Lai, C.; Li, H.; Sheng, Y.; Zhou, M.; Wang, W.; Gong, M.; Wang, K.; Jiang, K. Adv. Sci. 2022, 9, 2105925. doi: 10.1002/advs.202105925
-
[21]
(21) Lei, S.; Li, Q.-H.; Kang, Y.; Gu, Z.-G.; Zhang, J. Appl. Catal. B 2019, 245, 1. doi: 10.1016/j.apcatb.2018.12.036
-
[22]
(22) Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem. Int. Ed. 2022, 61, e202113278. doi: 10.1002/anie.202113278
-
[23]
(23) Zhao, J.; Ren, X.; Han, Q.; Fan, D.; Sun, X.; Kuang, X.; Wei, Q.; Wu, D. Chem. Commun. 2018, 54, 4987. doi: 10.1039/C8CC01002A
-
[24]
(24) Zhao, Y.; Wen, Q.; Huang, D.; Jiao, C.; Liu, Y.; Liu, Y.; Fang, J.; Sun, M.; Yu, L. Adv. Energy Mater. 2023, 13, 2203595. doi: 10.1002/aenm.202203595
-
[25]
(25) Zheng, W.; Liu, M.; Lee, L. Y. S. ACS Catal. 2020, 10, 81. doi: 10.1021/acscatal.9b03790
-
[26]
(26) Costa, R. K. S.; Teles, S. C.; Siqueira, K. P. F. Chem. Pap. 2021, 75, 237. doi: 10.1007/s11696-020-01294-z
-
[27]
(27) Kim, H.-J.; Kim, D.; Jung, S.; Bae, M.-H.; Yun, Y. J.; Yi, S. N.; Yu, J.-S.; Kim, J.-H.; Ha, D. H. J. Raman Spectrosc. 2018, 49, 1938. doi: 10.1002/jrs.5476
-
[28]
(28) Cai, M.; Zhu, Q.; Wang, X.; Shao, Z.; Yao, L.; Zeng, H.; Wu, X.; Chen, J.; Huang, K.; Feng, S. Adv. Mater. 2023, 35, 2209338. doi: 10.1002/adma.202209338
-
[29]
(29) Chen, M.; Kitiphatpiboon, N.; Feng, C.; Zhao, Q.; Abudula, A.; Ma, Y.; Yan, K.; Guan, G. Appl. Catal. B 2023, 330, 122577. doi: 10.1016/j.apcatb.2023.122577
-
[30]
(30) Fettkenhauer, C.; Wang, X.; Kailasam, K.; Antonietti, M.; Dontsova, D. J. Mater. Chem. A 2015, 3, 21227. doi: 10.1039/C5TA06304C
-
[31]
(31) Fan, K.; Zou, H.; Lu, Y.; Chen, H.; Li, F.; Liu, J.; Sun, L.; Tong, L.; Toney, M. F.; Sui, M.; et al. ACS Nano 2018, 12, 12369. doi: 10.1021/acsnano.8b06312
-
[32]
(32) Morozan, A.; Jégou, P.; Jousselme, B.; Palacin, S. Phys. Chem. Chem. Phys. 2011, 13, 21600. doi: 10.1039/C1CP23199E
-
[33]
(33) Tachikawa, T.; Beniya, A.; Shigetoh, K.; Higashi, S. Catal. Lett. 2020, 150, 1976. doi: 10.1007/s10562-020-03105-2
-
[34]
(34) Tao, H. B.; Xu, Y.; Huang, X.; Chen, J.; Pei, L.; Zhang, J.; Chen, J. G.; Liu, B. Joule 2019, 3, 1498. doi: 10.1016/j.joule.2019.03.012
-
[35]
(35) Parsons, R. Trans. Faraday Soc. 1958, 54, 1053. doi: 10.1039/TF9585401053
-
[36]
(36) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998
-
[37]
(37) Luan, R.-N.; Lv, Q.-X.; Li, Y.-Y.; Xie, J.-Y.; Li, W.-J.; Liu, H.-J.; Lv, R.-Q.; Chai, Y.-M.; Dong, B. Int. J. Hydrog. Energy 2023, 48, 25730. doi: 10.1016/j.ijhydene.2023.03.010
-
[38]
(38) Wang, Y.; Jiao, Y.; Yan, H.; Yang, G.; Tian, C.; Wu, A.; Liu, Y.; Fu, H. Angew. Chem. Int. Ed. 2022, 61, e202116233. doi: 10.1002/anie.202116233
-
[39]
(39) Liu, D.; Ai, H.; Li, J.; Fang, M.; Chen, M.; Liu, D.; Du, X.; Zhou, P.; Li, F.; Lo, K. H.; et al. Adv. Energy Mater. 2020, 10, 2002464. doi: 10.1002/aenm.202002464
-
[40]
(40) Zheng, L.; Ye, W.; Zhao, Y.; Lv, Z.; Shi, X.; Wu, Q.; Fang, X.; Zheng, H. Small 2023, 19, 2205092. doi: 10.1002/smll.202205092
-
[41]
(41) Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A
-
[42]
(42) Choi, J.; Kim, D.; Hong, S. J.; Zhang, X.; Hong, H.; Chun, H.; Han, B.; Lee, L. Y. S.; Piao, Y. Appl. Catal. B 2022, 315, 121504. doi: 10.1016/j.apcatb.2022.121504
-
[43]
(43) Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Cell Rep. Phys. Sci. 2020, 1, 100241. doi: 10.1016/j.xcrp.2020.100241
-
[44]
(44) Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Adv. Energy Mater. 2019, 9, 1802939. doi: 10.1002/aenm.201802939
-
[45]
(45) Yang, X.; Zhang, H.; Yu, B.; Liu, Y.; Xu, W.; Wu, Z. Energy Technol. 2022, 10, 2101010. doi: 10.1002/ente.202101010
-
[46]
(46) Himeno, S.; Niiya, H.; Ueda, T. Bull. Chem. Soc. Jpn. 1997, 70, 631. doi: 10.1246/bcsj.70.631
-
[47]
(47) Nasri, R.; Larbi, T.; Amlouk, M.; Zid, M. F. J. Mater. Sci. Mater. Electron. 2018, 29, 18372. doi: 10.1007/s10854-018-9951-x
-
[48]
(48) Yu, X.; Araujo, R. B.; Qiu, Z.; Campos dos Santos, E.; Anil, A.; Cornell, A.; Pettersson, L. G. M.; Johnsson, M. Adv. Energy Mater. 2022, 12, 2103750. doi: 10.1002/aenm.202103750
-
[1]
-
-
-
[1]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[2]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[7]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[8]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[9]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[10]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[11]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[12]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[13]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[14]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[15]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[16]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[17]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[18]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[19]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[20]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(262)
- HTML views(31)