Citation: Wentao Xu,  Xuyan Mo,  Yang Zhou,  Zuxian Weng,  Kunling Mo,  Yanhua Wu,  Xinlin Jiang,  Dan Li,  Tangqi Lan,  Huan Wen,  Fuqin Zheng,  Youjun Fan,  Wei Chen. 双金属浸出诱导催化剂重构用于高活性和高稳定性电化学水氧化[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230800. doi: 10.3866/PKU.WHXB202308003 shu

双金属浸出诱导催化剂重构用于高活性和高稳定性电化学水氧化

  • Corresponding author: Fuqin Zheng,  Youjun Fan,  Wei Chen, 
  • Received Date: 1 August 2023
    Revised Date: 22 September 2023
    Accepted Date: 22 September 2023

    Fund Project: The project was supported by the Natural Science Foundation of Guangxi, China (2019GXNSFGA245003, 2021GXNSFBA220058), the National Natural Science Foundation of China (22002026, 22272036), the Guangxi Technology Base and Talent Subject, China (GUIKE AD23026272), and the Guangxi Normal University Research Grant, China (2022TD).

  • 析氧反应(OER)催化剂在催化反应过程中不可避免地会发生表面重构,这一过程使得设计、构筑高性能和高稳定性的OER电催化剂充满挑战。在此,我们采用双金属浸出诱导表面重构的策略,构建了高活性和高稳定性的水氧化电催化剂。在该策略中,通过水热、离子交换和后续的退火工艺处理,将由α-CoMoO4、K2Co2(MoO4)3、Co3O4和CoFe2O4四种氧化物晶相组成的材料阵列转换为OER预催化剂。原位电化学拉曼光谱和非原位X射线衍射(XRD)分析表明,其中的不稳定成分K2Co2(MoO4)3的快速溶解引发了Mo和K的适度浸出,从而在低电压下加速了表面富集的α-Co(OH)2向CoOOH活性相的转化。此外,CoFe2O4相耦合重构产生新相CoO与无定形层CoOOH,从而形成了CoFe2O4@CoO@CoOOH紧密的多相结构,起到了“纳米栅栏”的作用,可有效防止催化剂的过度重构,从而赋予重构后的催化剂优异的催化活性和稳定性。本工作为设计高电流密度下具有优异活性和稳定性的OER催化剂提供了新的思路。
  • 加载中
    1. [1]

      (1) Jia, Y.; Zhang, L.; Zhuang, L.; Liu, H.; Yan, X.; Wang, X.; Liu, J.; Wang, J.; Zheng, Y.; Xiao, Z.; et al. Nat. Catal. 2019, 2, 688. doi: 10.1038/s41929-019-0297-4

    2. [2]

      (2) Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Resour. Conserv. Recycl. 2022, 176, 105959. doi: 10.1016/j.resconrec.2021.105959

    3. [3]

      (3) Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599

    4. [4]

      (4) Su, Z.; Huang, Q.; Guo, Q.; Hoseini, S.; Zheng, F.; Chen, W. Nano Res. Energy 2023, 2, e9120078. doi: 10.26599/NRE.2023.9120078

    5. [5]

      (5) Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9, 457. doi: 10.1038/nchem.2695

    6. [6]

      (6) McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w

    7. [7]

      (7) Xu, W.; Wu, K.; Wu, Y.; Guo, Q.; Fan, F.; Li, A.; Yang, L.; Zheng, F.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 439, 141712. doi: 10.1016/j.electacta.2022.141712

    8. [8]

      (8) Fan, F.; Huang, Q.; Devasenathipathy, R.; Peng, X.; Yang, F.; Liu, X.; Wang, L.; Chen, D.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 437, 141514. doi: 10.1016/j.electacta.2022.141514

    9. [9]

      (9) Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Adv. Mater. 2019, 31, 1807134. doi: 10.1002/adma.201807134

    10. [10]

      (10) Fan, F.; Hui, Y.; Devasenathipathy, R.; Peng, X.; Huang, Q.; Xu, W.; Yang, F.; Liu, X.; Wang, L.; Fan, Y.; et al. J. Colloid Interface Sci. 2023, 636, 450. doi: 10.1016/j.jcis.2023.01.039

    11. [11]

      (11) Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Science 2016, 352, 333. doi: 10.1126/science.aaf1525

    12. [12]

      (12) Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; et al. Angew. Chem. Int. Ed. 2016, 55, 12465. doi: 10.1002/anie.201606313

    13. [13]

      (13) Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 6517. doi: 10.1021/jacs.6b01606

    14. [14]

      (14) Xu, Q.; Jiang, H.; Duan, X.; Jiang, Z.; Hu, Y.; Boettcher, S. W.; Zhang, W.; Guo, S.; Li, C. Nano Lett. 2021, 21, 492. doi: 10.1021/acs.nanolett.0c03950

    15. [15]

      (15) Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B.-J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. Nat. Mater. 2017, 16, 925. doi: 10.1038/nmat4938

    16. [16]

      (16) Ren, X.; Wei, C.; Sun, Y.; Liu, X.; Meng, F.; Meng, X.; Sun, S.; Xi, S.; Du, Y.; Bi, Z.; et al. Adv. Mater. 2020, 32, 2001292. doi: 10.1002/adma.202001292

    17. [17]

      (17) Bai, J.; Mei, J.; Liao, T.; Sun, Q.; Chen, Z.-G.; Sun, Z. Adv. Energy Mater. 2022, 12, 2103247. doi: 10.1002/aenm.202103247

    18. [18]

      (18) Xiong, L.; Qiu, Y.; Peng, X.; Liu, Z.; Chu, P. K. Nano Energy 2022, 104, 107882. doi: 10.1016/j.nanoen.2022.107882

    19. [19]

      (19) Guo, Y.; Tang, J.; Wang, Z.; Sugahara, Y.; Yamauchi, Y. Small 2018, 14, 1802442. doi: 10.1002/smll.201802442

    20. [20]

      (20) Lai, C.; Li, H.; Sheng, Y.; Zhou, M.; Wang, W.; Gong, M.; Wang, K.; Jiang, K. Adv. Sci. 2022, 9, 2105925. doi: 10.1002/advs.202105925

    21. [21]

      (21) Lei, S.; Li, Q.-H.; Kang, Y.; Gu, Z.-G.; Zhang, J. Appl. Catal. B 2019, 245, 1. doi: 10.1016/j.apcatb.2018.12.036

    22. [22]

      (22) Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem. Int. Ed. 2022, 61, e202113278. doi: 10.1002/anie.202113278

    23. [23]

      (23) Zhao, J.; Ren, X.; Han, Q.; Fan, D.; Sun, X.; Kuang, X.; Wei, Q.; Wu, D. Chem. Commun. 2018, 54, 4987. doi: 10.1039/C8CC01002A

    24. [24]

      (24) Zhao, Y.; Wen, Q.; Huang, D.; Jiao, C.; Liu, Y.; Liu, Y.; Fang, J.; Sun, M.; Yu, L. Adv. Energy Mater. 2023, 13, 2203595. doi: 10.1002/aenm.202203595

    25. [25]

      (25) Zheng, W.; Liu, M.; Lee, L. Y. S. ACS Catal. 2020, 10, 81. doi: 10.1021/acscatal.9b03790

    26. [26]

      (26) Costa, R. K. S.; Teles, S. C.; Siqueira, K. P. F. Chem. Pap. 2021, 75, 237. doi: 10.1007/s11696-020-01294-z

    27. [27]

      (27) Kim, H.-J.; Kim, D.; Jung, S.; Bae, M.-H.; Yun, Y. J.; Yi, S. N.; Yu, J.-S.; Kim, J.-H.; Ha, D. H. J. Raman Spectrosc. 2018, 49, 1938. doi: 10.1002/jrs.5476

    28. [28]

      (28) Cai, M.; Zhu, Q.; Wang, X.; Shao, Z.; Yao, L.; Zeng, H.; Wu, X.; Chen, J.; Huang, K.; Feng, S. Adv. Mater. 2023, 35, 2209338. doi: 10.1002/adma.202209338

    29. [29]

      (29) Chen, M.; Kitiphatpiboon, N.; Feng, C.; Zhao, Q.; Abudula, A.; Ma, Y.; Yan, K.; Guan, G. Appl. Catal. B 2023, 330, 122577. doi: 10.1016/j.apcatb.2023.122577

    30. [30]

      (30) Fettkenhauer, C.; Wang, X.; Kailasam, K.; Antonietti, M.; Dontsova, D. J. Mater. Chem. A 2015, 3, 21227. doi: 10.1039/C5TA06304C

    31. [31]

      (31) Fan, K.; Zou, H.; Lu, Y.; Chen, H.; Li, F.; Liu, J.; Sun, L.; Tong, L.; Toney, M. F.; Sui, M.; et al. ACS Nano 2018, 12, 12369. doi: 10.1021/acsnano.8b06312

    32. [32]

      (32) Morozan, A.; Jégou, P.; Jousselme, B.; Palacin, S. Phys. Chem. Chem. Phys. 2011, 13, 21600. doi: 10.1039/C1CP23199E

    33. [33]

      (33) Tachikawa, T.; Beniya, A.; Shigetoh, K.; Higashi, S. Catal. Lett. 2020, 150, 1976. doi: 10.1007/s10562-020-03105-2

    34. [34]

      (34) Tao, H. B.; Xu, Y.; Huang, X.; Chen, J.; Pei, L.; Zhang, J.; Chen, J. G.; Liu, B. Joule 2019, 3, 1498. doi: 10.1016/j.joule.2019.03.012

    35. [35]

      (35) Parsons, R. Trans. Faraday Soc. 1958, 54, 1053. doi: 10.1039/TF9585401053

    36. [36]

      (36) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998

    37. [37]

      (37) Luan, R.-N.; Lv, Q.-X.; Li, Y.-Y.; Xie, J.-Y.; Li, W.-J.; Liu, H.-J.; Lv, R.-Q.; Chai, Y.-M.; Dong, B. Int. J. Hydrog. Energy 2023, 48, 25730. doi: 10.1016/j.ijhydene.2023.03.010

    38. [38]

      (38) Wang, Y.; Jiao, Y.; Yan, H.; Yang, G.; Tian, C.; Wu, A.; Liu, Y.; Fu, H. Angew. Chem. Int. Ed. 2022, 61, e202116233. doi: 10.1002/anie.202116233

    39. [39]

      (39) Liu, D.; Ai, H.; Li, J.; Fang, M.; Chen, M.; Liu, D.; Du, X.; Zhou, P.; Li, F.; Lo, K. H.; et al. Adv. Energy Mater. 2020, 10, 2002464. doi: 10.1002/aenm.202002464

    40. [40]

      (40) Zheng, L.; Ye, W.; Zhao, Y.; Lv, Z.; Shi, X.; Wu, Q.; Fang, X.; Zheng, H. Small 2023, 19, 2205092. doi: 10.1002/smll.202205092

    41. [41]

      (41) Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A

    42. [42]

      (42) Choi, J.; Kim, D.; Hong, S. J.; Zhang, X.; Hong, H.; Chun, H.; Han, B.; Lee, L. Y. S.; Piao, Y. Appl. Catal. B 2022, 315, 121504. doi: 10.1016/j.apcatb.2022.121504

    43. [43]

      (43) Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Cell Rep. Phys. Sci. 2020, 1, 100241. doi: 10.1016/j.xcrp.2020.100241

    44. [44]

      (44) Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Adv. Energy Mater. 2019, 9, 1802939. doi: 10.1002/aenm.201802939

    45. [45]

      (45) Yang, X.; Zhang, H.; Yu, B.; Liu, Y.; Xu, W.; Wu, Z. Energy Technol. 2022, 10, 2101010. doi: 10.1002/ente.202101010

    46. [46]

      (46) Himeno, S.; Niiya, H.; Ueda, T. Bull. Chem. Soc. Jpn. 1997, 70, 631. doi: 10.1246/bcsj.70.631

    47. [47]

      (47) Nasri, R.; Larbi, T.; Amlouk, M.; Zid, M. F. J. Mater. Sci. Mater. Electron. 2018, 29, 18372. doi: 10.1007/s10854-018-9951-x

    48. [48]

      (48) Yu, X.; Araujo, R. B.; Qiu, Z.; Campos dos Santos, E.; Anil, A.; Cornell, A.; Pettersson, L. G. M.; Johnsson, M. Adv. Energy Mater. 2022, 12, 2103750. doi: 10.1002/aenm.202103750

  • 加载中
    1. [1]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(1)
  • Abstract views(124)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return