Citation: Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230704. doi: 10.3866/PKU.WHXB202307046 shu

Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength

  • Corresponding author: Junrong Yu, yjr@dhu.edu.cn Jin Zhang, jinzhang@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 24 July 2023
    Revised Date: 7 September 2023
    Accepted Date: 8 September 2023
    Available Online: 12 September 2023

    Fund Project: the Ministry of Science and Technology of China 2022YFA1203302the Ministry of Science and Technology of China 2022YFA1203304the Ministry of Science and Technology of China 2016YFA0200100National Natural Science Foundation of China 52021006National Natural Science Foundation of China 51720105003National Natural Science Foundation of China 21790052National Natural Science Foundation of China 52102035Strategic Priority Research Program of CAS XDB36030100Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001Science Foundation of China University of Petroleum (Beijing) ZX20230047

  • Aramid fiber is highly regarded for its outstanding properties and is widely used in various industrial applications. Among the different types of aramid fibers, meta-aramids, particularly poly(m-phenylene isophthalamide) (PMIA), are known for their exceptional flame retardance, high-temperature resistance, excellent electrical insulation, and remarkable chemical stability. As a result, PMIA-based materials find extensive use in industries focused on fire prevention, heat protection, and related applications. However, PMIA fibers have limitations due to the lack of conjugation between amide and benzene ring bonds in their molecular structure, resulting in flexible segments with low crystallinity, which in turn leads to inferior mechanical strength. Researchers have shown great interest in nanocomposites as a means to overcome these limitations. In this context, graphene nanocomposites have gained significant attention. Graphene, with its benzene ring arrangement within its layers, easily bonds with polymers possessing a similar structure. This property makes graphene a promising candidate for enhancing the mechanical strength of aromatic polymers like PMIA. Moreover, small-sized graphene particles exhibit superior dispersibility within fibrous polymer matrices, leading to more effective reinforcement compared to larger graphene sheets. Consequently, incorporating high-quality, small-sized graphene into polymer matrices can substantially improve the properties of these polymers. There is a growing demand for enhancing the mechanical characteristics of aramid fibers to expand their applications beyond traditional uses. This research demonstrates how sub-micron-sized graphene improves the structural integrity and mechanical strength of PMIA fibers. The results show a remarkable 46% enhancement in tensile strength compared to unmodified PMIA fibers. While the graphene/PMIA fiber exhibits exceptional mechanical properties, it also holds great potential for applications in wearables, flexible sensors, and various other domains, thanks to graphene's versatile characteristics. This research underscores the importance of utilizing small-sized, high-quality graphene to develop more robust carbonaceous nanocomposite fibers suitable for a wide range of commercial purposes. Beyond its immediate impact on PMIA fibers, this research represents a significant step forward in advancing the utilization and growth of graphene materials in various applications.
  • 加载中
    1. [1]

      Tan, J.; Luo, Y.; Zhang, M.; Yang, B.; Li, F.; Ruan, S. ACS Appl. Mater. Interfaces 2021, 13 (14), 16895. doi: 10.1021/acsami.1c02075  doi: 10.1021/acsami.1c02075

    2. [2]

      Pegoretti, A.; Traina, M. Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Elsevier: Cambrige, United States, 2018; pp. 621–697.

    3. [3]

      Tang, C.; Li, X.; Li, Z.; Tian, W.; Zhou, Q. Polymers 2018, 10 (12), 1348. doi: 10.3390/polym10121348  doi: 10.3390/polym10121348

    4. [4]

      Nazaré, S. Advances in Fire Retardant Materials, 1st ed.; Elsevier: Cambrige, United States, 2008; pp. 492–526

    5. [5]

      Patel, A.; Wilcox, K.; Li, Z.; George, I.; Juneja, R.; Lollar, C.; Lazar, S.; Grunlan, J.; Tenhaeff, W.; Lutkenhaus, J. ACS Appl. Mater. Interfaces 2020, 12 (23), 25756. doi: 10.1021/acsami.0c03671  doi: 10.1021/acsami.0c03671

    6. [6]

      Horrocks, A.; Nazaré. S.; Masood, R.; Kandola, B.; Price, D. Polym. Adv. Technol. 2011, 22, 29. doi: 10.1002/pat.1707  doi: 10.1002/pat.1707

    7. [7]

      Li, X.; Tang, C.; Wang, J.; Tian, W.; Hu, D. J. Mater. Sci. 2019, 54, 8556. doi: 10.1007/s10853-019-03476-x  doi: 10.1007/s10853-019-03476-x

    8. [8]

      Kang, W.; Deng, N.; Ma, X.; Ju, J.; Li, L.; Liu, X.; Cheng, B. Electrochim. Acta 2016, 216, 276. doi: 10.1016/j.electacta.2016.09.035  doi: 10.1016/j.electacta.2016.09.035

    9. [9]

      Lu, Z.; Si, L.; Dang, W.; Zhao, Y. Compos. Part. A-Appl. Sci. Manuf. 2018, 115, 321. doi: 10.1016/j.compositesa.2018.10.009  doi: 10.1016/j.compositesa.2018.10.009

    10. [10]

      Ramani, R.; Kotresh, T.; Shekar, R. I.; Sanal, F.; Singh, U.; Renjith, R.; Amarendra, G. Polymer 2018, 135, 39. doi: 10.1016/j.polymer.2017.11.064  doi: 10.1016/j.polymer.2017.11.064

    11. [11]

      Yang, C.; Wu, H.; Dai, Y.; Tang, S.; Luo, L.; Liu, X. Polymer 2019, 180, 121687. doi: 10.1016/j.polymer.2019.121687  doi: 10.1016/j.polymer.2019.121687

    12. [12]

      Chung, J.; Kwak, S. Eur. Polym. J. 2018, 107, 46. doi: 10.1016/j.eurpolymj.2018.07.051  doi: 10.1016/j.eurpolymj.2018.07.051

    13. [13]

      Fei, B. Engineering of High-Performance Textiles, 1st ed.; Elsevier: Cambrige, United States, 2018; pp. 27–58.

    14. [14]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    15. [15]

      Suk, J.; Piner, R.; An, J.; Ruoff, R. ACS Nano 2010, 4, 6557. doi: 10.1021/nn101781v  doi: 10.1021/nn101781v

    16. [16]

      Ramanathan, T.; Abdala, A.; Stankovich, S.; Dikin, D.; Herrera-Alonso, M.; Piner, R.; Adamson, D.; Schniepp, H.; Chen, X.; Ruoff, R.; et al. Nat. Nanotechnol. 2008, 3, 327. doi: 10.1038/nnano.2008.96  doi: 10.1038/nnano.2008.96

    17. [17]

      Fan, J.; Shi, Z.; Zhang, L.; Wang, J.; Yin, J. Nanoscale 2012, 4, 7046. doi: 10.1039/C2NR31907A  doi: 10.1039/C2NR31907A

    18. [18]

      Yang, Z.; Jin, L.; Lu, G.; Xiao, Q.; Zhang, Y.; Jing, L.; Zhang, X.; Yan, Y.; Sun, K. Adv. Funct. Mater. 2014, 24, 3917. doi: 10.1002/adfm.201304091  doi: 10.1002/adfm.201304091

    19. [19]

      Sun, K.; Dong, H.; Kou, Y.; Yang, H.; Liu, H.; Li, Y.; Shi, Q. Chem. Eng. J. 2021, 419, 129637. doi: 10.1016/j.cej.2021.129637  doi: 10.1016/j.cej.2021.129637

    20. [20]

      Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A.; Ruoff, R. Nat. Mater. 2012, 11, 203. doi: 10.1038/nmat3207  doi: 10.1038/nmat3207

    21. [21]

      Stöberl, U.; Wurstbauer, U.; Wegscheider, W.; Weiss, D.; Eroms, J. Appl. Phys. Lett. 2008, 93, 051906. doi: 10.1063/1.2968310  doi: 10.1063/1.2968310

    22. [22]

      Zhang, B.; Lian, T.; Shao, X.; Tian, M. Ind. Eng. Chem. Res. 2021, 60, 2472. doi: 10.1021/acs.iecr.0c05794  doi: 10.1021/acs.iecr.0c05794

    23. [23]

      Sun, Y.; Chen, Z.; Gong, H.; Li, X.; Gao, Z.; Xu, S.; Han, X.; Han, B.; Meng, X.; Zhang, J. Adv. Mater. 2020, 32, 2002024. doi: 10.1002/adma.202002024  doi: 10.1002/adma.202002024

    24. [24]

      Zeng, L.; Liu, X.; Chen, X.; Soutis, C. Compos. Part. B-Eng. 2021, 220, 108983. doi: 10.1016/j.compositesb.2021.108983  doi: 10.1016/j.compositesb.2021.108983

    25. [25]

      Luo, T.; Lloyd, J. Adv. Funct. Mater. 2012, 22, 2495. doi: 10.1002/adfm.201103048  doi: 10.1002/adfm.201103048

    26. [26]

      Song, Q.; Wu, W.; Wang, Y.; Yu, J.; Hu, Z.; Wang, Y. Adv. Fiber. Mater. 2022, 4, 436. doi: 10.1007/s42765-021-00110-x  doi: 10.1007/s42765-021-00110-x

    27. [27]

      Song, Q.; Feng, Y.; Wu, W.; Yu, J.; Hu, Z.; Wang, Y.; Zhu, J. J. Text. Inst. 2021, 112, 2004. doi: 10.1080/00405000.2020.1862491  doi: 10.1080/00405000.2020.1862491

    28. [28]

      Sun, Y.; Yang, L.; Xia, K.; Liu, H.; Han, D.; Zhang, Y.; Zhang, J. Adv. Mater. 2018, 30, 1803189. doi: 10.1002/adma.201803189  doi: 10.1002/adma.201803189

    29. [29]

      Moghaddam, M.; Goharshadi, E.; Entezari, M.; Nancarrow, P. Chem. Eng. J. 2013, 231, 365. doi: 10.1016/j.cej.2013.07.006  doi: 10.1016/j.cej.2013.07.006

    30. [30]

      Chazot, C.; Damirchi, B.; Lee, B.; Van Duin, A.; Hart, A. Nano Lett. 2022, 22, 998. doi: 10.1021/acs.nanolett.1c03866  doi: 10.1021/acs.nanolett.1c03866

    31. [31]

      Edwards, H.; Hakiki, S. Brit. Polym. J. 1989, 21, 505. doi: 10.1002/pi.4980210611  doi: 10.1002/pi.4980210611

    32. [32]

      Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. Phys. Rep. 2009, 473, 51. doi: 10.1016/j.physrep.2009.02.003  doi: 10.1016/j.physrep.2009.02.003

  • 加载中
    1. [1]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    2. [2]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    3. [3]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    6. [6]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    7. [7]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    8. [8]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    9. [9]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    12. [12]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    16. [16]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

Metrics
  • PDF Downloads(0)
  • Abstract views(160)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return