All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation
- Corresponding author: Siqi Shi, sqshi@shu.edu.cn
 
	            Citation:
	            
		            Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation[J]. Acta Physico-Chimica Sinica,
							;2024, 40(7): 230702.
						
							doi:
								10.3866/PKU.WHXB202307029
						
					
				
					
				
	        
	                
				Zhang, S.; Ma, J.; Dong, S.; Cui, G. Electrochem. Energy Rev.  2023,  6 (1), 4. doi: 10.1007/s41918-022-00143-9
												 doi: 10.1007/s41918-022-00143-9
											
										
				Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Adv. Energy Mater.  2023,  13 (15), 2204343. doi: 10.1002/aenm.202204343
												 doi: 10.1002/aenm.202204343
											
										
				Janek, J.; Zeier, W. G. Nat. Energy 2023,  8 (3), 230. doi: 10.1038/s41560-023-01208-9
												 doi: 10.1038/s41560-023-01208-9
											
										
				Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Joule 2022,  6 (4), 742. doi: 10.1016/j.joule.2022.02.007
												 doi: 10.1016/j.joule.2022.02.007
											
										
				Rettenwander, D.; Redhammer, G.; Preishuber-Pflügl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M. M.; Wilkening, M.; et al.  Chem. Mater.  2016,  28 (7), 2384. doi: 10.1021/acs.chemmater.6b00579
												 doi: 10.1021/acs.chemmater.6b00579
											
										
				Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al.  Chem. Mater.  2020,  32 (6), 2664. doi: 10.1021/acs.chemmater.9b04764
												 doi: 10.1021/acs.chemmater.9b04764
											
										
				Xu, G.; Luo, L.; Liang, J.; Zhao, S.; Yang, R.; Wang, C.; Yu, T.; Wang, L.; Xiao, W.; Wang, J.; et al.  Nano Energy 2022,  92, 106674. doi: 10.1016/j.nanoen.2021.106674
												 doi: 10.1016/j.nanoen.2021.106674
											
										
				Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; et al.  Chem. Rev.  2020,  120 (9), 4169. doi: 10.1021/acs.chemrev.9b00760
												 doi: 10.1021/acs.chemrev.9b00760
											
										
				Jiang, Y.; Lai, A.; Ma, J.; Yu, K.; Zeng, H.; Zhang, G.; Huang, W.; Wang, C.; Chi, S.; Wang, J.; et al.  ChemSusChem 2023,  16 (9), e202202156. doi: 10.1002/cssc.202202156
												 doi: 10.1002/cssc.202202156
											
										
				Gandi, S.; Chidambara Swamy Vaddadi, V. S.; Sripada Panda, S. S.; Goona, N. K.; Parne, S. R.; Lakavat, M.; Bhaumik, A. J. Power Sources 2022,  521, 230930. doi: 10.1016/j.jpowsour.2021.230930
												 doi: 10.1016/j.jpowsour.2021.230930
											
										
				Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli, I. E.; Canepa, P.; Seh, Z. W. Energy Environ. Sci.  2022,  15 (2), 579. doi: 10.1039/D1EE02324A
												 doi: 10.1039/D1EE02324A
											
										
				Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al.  Nat. Commun.  2020,  11 (1), 5889. doi: 10.1038/s41467-020-19726-5
												 doi: 10.1038/s41467-020-19726-5
											
										
				Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem.  2021,  52, 202. doi: 10.1016/j.jechem.2020.03.057
												 doi: 10.1016/j.jechem.2020.03.057
											
										
				Park, B. K.; Kim, H.; Kim, K. S.; Kim, H.; Han, S. H.; Yu, J.; Hah, H. J.; Moon, J.; Cho, W.; Kim, K. J. Adv. Energy Mater.  2022,  12 (37), 2201208. doi: 10.1002/aenm.202201208
												 doi: 10.1002/aenm.202201208
											
										
				Tian, H.-K.; Qi, Y. J. Electrochem. Soc.  2017,  164 (11), E3512. doi: 10.1149/2.0481711jes
												 doi: 10.1149/2.0481711jes
											
										
				Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Trends Chem.  2019,  1 (9), 845. doi: 10.1016/j.trechm.2019.06.013
												 doi: 10.1016/j.trechm.2019.06.013
											
										
				Kim, J.; Kim, M. J.; Kim, J.; Lee, J. W.; Park, J.; Wang, S. E.; Lee, S.; Kang, Y. C.; Paik, U.; Jung, D. S.; et al.  Adv. Funct. Mater.  2023,  33 (12), 2211355. doi: 10.1002/adfm.202211355
												 doi: 10.1002/adfm.202211355
											
										
				Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. J. Mater. Chem. A 2019,  7 (40), 22967. doi: 10.1039/C9TA08517C
												 doi: 10.1039/C9TA08517C
											
										
				Gao, B.; Jalem, R.; Tateyama, Y. ACS Appl. Mater. Interfaces 2021,  13 (10), 11765. doi: 10.1021/acsami.0c19091
												 doi: 10.1021/acsami.0c19091
											
										
				Ren, F.; Liang, Z.; Zhao, W.; Zuo, W.; Lin, M.; Wu, Y.; Yang, X.; Gong, Z.; Yang, Y. Energy Environ. Sci.  2023,  16 (6), 2579. doi: 10.1039/D3EE00870C
												 doi: 10.1039/D3EE00870C
											
										
				Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Curr. Opin. Solid State Mater. Sci.  2022,  26 (3), 100990. doi: 10.1016/j.cossms.2022.100990
												 doi: 10.1016/j.cossms.2022.100990
											
										
				Maier, J. Ber. Bunsen-Ges. Phys. Chem.  1984,  88 (11), 1057. doi: 10.1002/bbpc.198400007
												 doi: 10.1002/bbpc.198400007
											
										
				Maier, J. Prog. Solid State Chem.  1995,  23 (3), 171. doi: 10.1016/0079-6786(95)00004-E
												 doi: 10.1016/0079-6786(95)00004-E
											
										
				Wu, J.-F.; Guo, X. Phys. Chem. Chem. Phys.  2017,  19 (8), 5880. doi: 10.1039/C6CP07757A
												 doi: 10.1039/C6CP07757A
											
										
Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946.
				Lehovec, K. J. Chem. Phys.  1953,  21 (7), 1123. doi: 10.1063/1.1699148
												 doi: 10.1063/1.1699148
											
										
				Kliewer, K. L.; Koehler, J. S. Phys. Rev.  1965,  140 (4A), A1226. doi: 10.1103/PhysRev.140.A1226
												 doi: 10.1103/PhysRev.140.A1226
											
										
				Liang, C. C. J. Electrochem. Soc.  1973,  120 (10), 1289. doi: 10.1149/1.2403248
												 doi: 10.1149/1.2403248
											
										
				Dudney, N. J. J. Am. Ceram. Soc.  1985,  68 (10), 538. doi: 10.1111/j.1151-2916.1985.tb11520.x
												 doi: 10.1111/j.1151-2916.1985.tb11520.x
											
										
				Maier, J. J. Phys. Chem. Solids 1985,  46 (3), 309. doi: 10.1016/0022-3697(85)90172-6
												 doi: 10.1016/0022-3697(85)90172-6
											
										
				Jow, T.; Wagner, J. B. J. Electrochem. Soc.  1979,  126 (11), 1963. doi: 10.1149/1.2128835
												 doi: 10.1149/1.2128835
											
										
				Nakamura, O.; Goodenough, J. B. Solid State Ion.  1982,  7 (2), 119. doi: 10.1016/0167-2738(82)90004-2
												 doi: 10.1016/0167-2738(82)90004-2
											
										
				Maier, J. Ber. Bunsen-Ges. Phys. Chem.  1985,  89 (4), 355. doi: 10.1002/bbpc.19850890402
												 doi: 10.1002/bbpc.19850890402
											
										
				Modine, F. A.; Lubben, D.; Bates, J. B. J. Appl. Phys.  1993,  74 (4), 2658. doi: 10.1063/1.354657
												 doi: 10.1063/1.354657
											
										
				Maier, J. Ber. Bunsen-Ges. Phys. Chem.  1986,  90 (1), 26. doi: 10.1002/bbpc.19860900105
												 doi: 10.1002/bbpc.19860900105
											
										
				Maier, J.; Lauer, U. Ber. Bunsen-Ges. Phys. Chem.  1990,  94 (9), 973. doi: 10.1002/bbpc.19900940918
												 doi: 10.1002/bbpc.19900940918
											
										
				Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Acta Mater.  2005,  53 (19), 5161. doi: 10.1016/j.actamat.2005.07.033
												 doi: 10.1016/j.actamat.2005.07.033
											
										
				Guo, X.; Maier, J. Adv. Funct. Mater.  2009,  19 (1), 96. doi: 10.1002/adfm.200800805
												 doi: 10.1002/adfm.200800805
											
										
				Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000,  408 (6815), 946. doi: 10.1038/35050047
												 doi: 10.1038/35050047
											
										
				Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater.  2006,  18 (17), 2226. doi: 10.1002/adma.200502604
												 doi: 10.1002/adma.200502604
											
										
				Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater.  2003,  13 (8), 621. doi: 10.1002/adfm.200304406
												 doi: 10.1002/adfm.200304406
											
										
				Maier, J. Angew. Chem. Int. Ed.  2013,  52 (19), 4998. doi: 10.1002/anie.201205569
												 doi: 10.1002/anie.201205569
											
										
				Maier, J. Nat. Mater.  2005,  4 (11), 805. doi: 10.1038/nmat1513
												 doi: 10.1038/nmat1513
											
										
				Li, C.; Gu, L.; Guo, X.; Samuelis, D.; Tang, K.; Maier, J. Nano Lett.  2012,  12 (3), 1241. doi: 10.1021/nl203623h
												 doi: 10.1021/nl203623h
											
										
				Li, C.; Maier, J. Solid State Ion.  2012,  225, 408. doi: 10.1016/j.ssi.2012.02.036
												 doi: 10.1016/j.ssi.2012.02.036
											
										
				de Klerk, N. J. J.; Wagemaker, M. ACS Appl. Energy Mater.  2018,  10 (1), 5609. doi: 10.1021/acsaem.8b01141
												 doi: 10.1021/acsaem.8b01141
											
										
				Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Joule 2020,  4 (6), 1311. doi: 10.1016/j.joule.2020.04.002
												 doi: 10.1016/j.joule.2020.04.002
											
										
				Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion.  2012,  225, 594. doi: 10.1016/j.ssi.2012.01.009
												 doi: 10.1016/j.ssi.2012.01.009
											
										
				Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Chem. Mater.  2014,  26 (14), 4248. doi: 10.1021/cm5016959
												 doi: 10.1021/cm5016959
											
										
				Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020,  456, 227997. doi: 10.1016/j.jpowsour.2020.227997
												 doi: 10.1016/j.jpowsour.2020.227997
											
										
				Liu, Y.; Yu, T.; Guo, S.; Zhou, H. Acta Phys. -Chim. Sin.  2023,  39, 2301027.
												 doi: 10.3866/PKU.WHXB202301027
											
										
				Zhao, Y.; Chen, C.; Liu, W.; Hu, W.; Liu, J. Acta Phys. -Chim. Sin.  2023,  39, 2211017.
												 doi: 10.3866/PKU.WHXB202211017
											
										
				Seino, Y.; Ota, T.; Takada, K. J. Power Sources 2011,  196 (15), 6488. doi: 10.1016/j.jpowsour.2011.03.090
												 doi: 10.1016/j.jpowsour.2011.03.090
											
										
				Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc.  2009,  156 (1), A27. doi: 10.1149/1.3005972
												 doi: 10.1149/1.3005972
											
										
				Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ion.  2008,  179 (27–32), 1333. doi: 10.1016/j.ssi.2008.02.017
												 doi: 10.1016/j.ssi.2008.02.017
											
										
				Machida, N.; Kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ion.  2012,  225, 354. doi: 10.1016/j.ssi.2011.11.026
												 doi: 10.1016/j.ssi.2011.11.026
											
										
				Woo, J. H.; Trevey, J. E.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S.-H. J. Electrochem. Soc.  2012,  159 (7), A1120. doi: 10.1149/2.085207jes
												 doi: 10.1149/2.085207jes
											
										
				Wang, C.-W.; Ren, F.-C.; Zhou, Y.; Yan, P.-F.; Zhou, X.-D.; Zhang, S.-J.; Liu, W.; Zhang, W.-D.; Zou, M.-H.; Zeng, L.-Y.; et al.  Energy Environ. Sci.  2021,  14 (1), 437. doi: 10.1039/D0EE03212C
												 doi: 10.1039/D0EE03212C
											
										
				Xu, Z.-M.; Bo, S.-H.; Zhu, H. ACS Appl. Mater. Interfaces 2018,  10 (43), 36941. doi: 10.1021/acsami.8b12026
												 doi: 10.1021/acsami.8b12026
											
										
				Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett.  2019,  4 (10), 2444. doi: 10.1021/acsenergylett.9b01703
												 doi: 10.1021/acsenergylett.9b01703
											
										
				Zhang, H.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. Chem. Rev.  2022,  122 (6), 5641. doi: 10.1021/acs.chemrev.1c00327
												 doi: 10.1021/acs.chemrev.1c00327
											
										
				Haruta, M.; Shiraki, S.; Suzuki, T.; Kumatani, A.; Ohsawa, T.; Takagi, Y.; Shimizu, R.; Hitosugi, T. Nano Lett.  2015,  15 (3), 1498. doi: 10.1021/nl5035896
												 doi: 10.1021/nl5035896
											
										
				Hart, F. X.; Bates, J. B. J. Appl. Phys.  1998,  83 (12), 7560. doi: 10.1063/1.367521
												 doi: 10.1063/1.367521
											
										
				Lucovsky, G.; Liang, W. Y.; White, R. M.; Pisharody, K. R. Solid State Commun.  1976,  19 (4), 303. doi: 10.1016/0038-1098(76)91337-5
												 doi: 10.1016/0038-1098(76)91337-5
											
										
				Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc.  2011,  158 (12), A1282. doi: 10.1149/2.017112jes
												 doi: 10.1149/2.017112jes
											
										
				Cai, L.; Zhang, Q.; Mwizerwa, J. P.; Wan, H.; Yang, X.; Xu, X.; Yao, X. ACS Appl. Mater. Interfaces 2018,  10 (12), 10053. doi: 10.1021/acsami.7b18798
												 doi: 10.1021/acsami.7b18798
											
										
				Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. J. Materiomics 2019,  5 (1), 73. doi: 10.1016/j.jmat.2018.10.001
												 doi: 10.1016/j.jmat.2018.10.001
											
										
				Yada, C.; Ohmori, A.; Ide, K.; Yamasaki, H.; Kato, T.; Saito, T.; Sagane, F.; Iriyama, Y. Adv. Energy Mater.  2014,  4 (9), 1301416. doi: 10.1002/aenm.201301416
												 doi: 10.1002/aenm.201301416
											
										
				Kim, S.; Fleig, J.; Maier, J. Phys. Chem. Chem. Phys.  2003,  5 (11), 2268. doi: 10.1039/B300170A
												 doi: 10.1039/B300170A
											
										
				Gregori, G.; Merkle, R.; Maier, J. Prog. Mater. Sci.  2017,  89, 252. doi: 10.1016/j.pmatsci.2017.04.009
												 doi: 10.1016/j.pmatsci.2017.04.009
											
										
				Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. Int. Ed.  2010,  49 (26), 4414. doi: 10.1002/anie.200907319
												 doi: 10.1002/anie.200907319
											
										
				Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Nanoscale 2017,  9 (2), 893. doi: 10.1039/C6NR07971G
												 doi: 10.1039/C6NR07971G
											
										
				Tsuchiya, B.; Ohnishi, J.; Sasaki, Y.; Yamamoto, T.; Yamamoto, Y.; Motoyama, M.; Iriyama, Y.; Morita, K. Adv. Mater. Interfaces 2019,  6 (14), 1900100. doi: 10.1002/admi.201900100
												 doi: 10.1002/admi.201900100
											
										
				Katzenmeier, L.; Carstensen, L.; Schaper, S. J.; Müller-Buschbaum, P.; Bandarenka, A. S. Adv. Mater.  2021,  33 (24), 2100585. doi: 10.1002/adma.202100585
												 doi: 10.1002/adma.202100585
											
										
				Katzenmeier, L.; Helmer, S.; Braxmeier, S.; Knobbe, E.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2021,  13 (4), 5853. doi: 10.1021/acsami.0c21304
												 doi: 10.1021/acsami.0c21304
											
										
				Katzenmeier, L.; Carstensen, L.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2022,  14 (13), 15811. doi: 10.1021/acsami.2c00650
												 doi: 10.1021/acsami.2c00650
											
										
				Swift, M. W.; Qi, Y. Phys. Rev. Lett.  2019,  122 (16), 167701. doi: 10.1103/PhysRevLett.122.167701
												 doi: 10.1103/PhysRevLett.122.167701
											
										
				Liu, Y.; Bai, Y.; Jaegermann, W.; Hausbrand, R.; Xu, B.-X. ACS Appl. Mater. Interfaces 2021,  13 (4), 5895. doi: 10.1021/acsami.0c22986
												 doi: 10.1021/acsami.0c22986
											
										
				Sinzig, S.; Hollweck, T.; Schmidt, C. P.; Wall, W. A. J. Electrochem. Soc.  2023,  170 (4), 040513. doi: 10.1149/1945-7111/acc692
												 doi: 10.1149/1945-7111/acc692
											
										
				Katzenmeier, L.; Gößwein, M.; Gagliardi, A.; Bandarenka, A. S. J. Phys. Chem. C 2022,  126 (26), 10900. doi: 10.1021/acs.jpcc.2c02481
												 doi: 10.1021/acs.jpcc.2c02481
											
										
				Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ouchi, S.; Igaki, E.; Saitoh, K. Angew. Chem.  2019,  131 (16), 5346. doi: 10.1002/ange.201814669
												 doi: 10.1002/ange.201814669
											
										
				Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Adv. Energy Mater.  2020,  10 (4), 1903311. doi: 10.1002/aenm.201903311
												 doi: 10.1002/aenm.201903311
											
										
				Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022,  14 (22), 25556. doi: 10.1021/acsami.2c05239
												 doi: 10.1021/acsami.2c05239
											
										
				Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater.  2017,  29 (18), 7675. doi: 10.1021/acs.chemmater.7b00890
												 doi: 10.1021/acs.chemmater.7b00890
											
										
				Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. ACS Appl. Mater. Interfaces 2020,  12 (49), 54752. doi: 10.1021/acsami.0c16463
												 doi: 10.1021/acsami.0c16463
											
										
				Wang, D.; Jiao, Y.; Shi, W.; Pu, B.; Ning, F.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.; Wang, H.; et al.  Prog. Mater. Sci.  2023,  133, 101055. doi: 10.1016/j.pmatsci.2022.101055
												 doi: 10.1016/j.pmatsci.2022.101055
											
										
				Goodenough, J. B.; Kim, Y. Chem. Mater.  2010,  22 (3), 587. doi: 10.1021/cm901452z
												 doi: 10.1021/cm901452z
											
										
				Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. J. Electrochem. Soc.  2019,  166 (3), A5308. doi: 10.1149/2.0441903jes
												 doi: 10.1149/2.0441903jes
											
										
				Boettcher, S. W.; Oener, S. Z.; Lonergan, M. C.; Surendranath, Y.; Ardo, S.; Brozek, C.; Kempler, P. A. ACS Energy Lett.  2021,  6 (1), 261. doi: 10.1021/acsenergylett.0c02443
												 doi: 10.1021/acsenergylett.0c02443
											
										
				Yu, P.; Li, C.; Guo, X. J. Phys. Chem. C 2014,  118 (20), 10616. doi: 10.1021/jp5010693
												 doi: 10.1021/jp5010693
											
										
				Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Nat. Rev. Mater.  2021,  6 (11), 1020. doi: 10.1038/s41578-021-00324-w
												 doi: 10.1038/s41578-021-00324-w
											
										
				Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al.  Sci. Bull.  2022,  67 (11), 1145. doi: 10.1016/j.scib.2022.04.001
												 doi: 10.1016/j.scib.2022.04.001
											
										
						
						
						
	                Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
Yan Zhang , Xiaoyan Cao , Yiming Li , Shuwei Xia , Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093