Citation: Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230702. doi: 10.3866/PKU.WHXB202307028 shu

Super Graphene-Skinned Material: A New Member of Graphene Materials Family

  • Corresponding author: Zhongfan Liu, zfliu@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 13 July 2023
    Revised Date: 30 July 2023
    Accepted Date: 31 July 2023
    Available Online: 7 August 2023

    Fund Project: the National Natural Science Foundation of China T2188101the National Natural Science Foundation of China 52272032

  • As a new member of graphene materials family, super graphene-skinned material is a type of graphene composite materials made by directly depositing continuous graphene layers on traditional materials via chemical vapor deposition (CVD) process. By growing high-performance graphene "skin", the traditional materials are given new functionalities. The atomically thin graphene hitches a ride on the traditional material carriers to market. Beyond coating graphene powder on traditional materials, the directly-grown continuous graphene "skin" keeps its intrinsic excellent properties to a great extent, and holds the promise on future applications. Super graphene-skinned material is an innovative pathway for applications of continuous graphene films, which avoids the challenging peeling-transfer process and solves the non-self-supporting issue of ultrathin graphene film. The graphene skin almost has no influence on macroscale morphology of the supporting substrate, which leads to the high process compatibility of super graphene-skinned material in practical application scenarios. Therefore, graphene-skinned materials would exhibit their excellent performance without changing the processing of current engineering materials, and will be pushed to real industrial applications relying on the broad market of current engineering materials.Super graphene-skinned materials can be categorized into graphene-skinned metallic materials and graphene-skinned nonmetallic materials. Depending on the different morphologies of supporting substrate materials including foil, fiber, powder, foam, etc., one can obtain graphene-skinned foil, graphene-skinned fiber, graphene-skinned powder, graphene-skinned foam, etc. Additionally, together with post-processing treatments and compositing with other materials, great versatilities can be expected for super graphene-skinned materials. As a typical example, graphene-skinned glass fiber, combining the excellent properties of graphene and glass fiber, such as the high electrical conductivity and thermal conductivity of graphene, along with the remarkable mechanical strength and flexibility of glass fiber. Graphene-skinned glass fiber presented wonderful electrothermal performances with fast heating rate and high heating uniformity, which has been successfully applied for the anti/deicing of aircraft and wind blade. The new concept of super graphene-skinned material opens up a new avenue for practical applications of continuous graphene films, strongly promotes the fusion of graphene and traditional materials, and provides new power for accelerating the graphene industry.
  • 加载中
    1. [1]

      Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3 (8), 491. doi: 10.1038/nnano.2008.199  doi: 10.1038/nnano.2008.199

    2. [2]

      Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    3. [3]

      Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    4. [4]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320 (5881), 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    5. [5]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    6. [6]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32 (5), 1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    7. [7]

      Chen, L. L.; Liu, Y.; Zhao, Y.; Chen, N.; Qu, L. T. Nanotechnology 2016, 27 (3), 032001. doi: 10.1088/0957-4484/27/3/032001  doi: 10.1088/0957-4484/27/3/032001

    8. [8]

      Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Adv. Mater. 2013, 25 (2), 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    9. [9]

      Jiang, Y. Q.; Guo, F.; Xu, Z.; Gao, W. W.; Gao, C. Nat. Commun. 2019, 10 (1), 4111. doi: 10.1038/s41467-019-11941-z  doi: 10.1038/s41467-019-11941-z

    10. [10]

      Xin, G. Q.; Yao, T. K.; Sun, H. T.; Scott, S. M.; Shao, D. L.; Wang, G. K.; Lian, J. Science 2015, 349 (6252), 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    11. [11]

      Xin, G. Q.; Zhu, W. G.; Deng, Y. X.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14 (2), 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    12. [12]

      Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324 (5932), 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    13. [13]

      Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Chem. Rev. 2018, 118 (18), 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    14. [14]

      Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. ACS Nano 2020, 14, 10796. doi: 10.1021/acsnano.0c06141  doi: 10.1021/acsnano.0c06141

    15. [15]

      Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312 (5777), 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    16. [16]

      Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. ; et al. Nat. Commun. 2012, 3 (1), 699. doi: 10.1038/ncomms1702  doi: 10.1038/ncomms1702

    17. [17]

      Sutter, P. W.; Flege, J.; Sutter, E. A. Nature Mater. 2008, 7 (5), 406. doi: 10.1038/nmat2166  doi: 10.1038/nmat2166

    18. [18]

      Alfonso, R.; Xiaoting, J.; John, H.; Daniel, N.; Hyungbin, S.; Vladimir, B.; Dresselhaus, M. S.; Jing, K. J. N. L. Nano Lett. 2009, 9 (1), 30. doi: 10.1021/nl801827v  doi: 10.1021/nl801827v

    19. [19]

      Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y. F.; Liao, L.; Liu, Z. F. J. Phys. Chem. C 2011, 115, 11976. doi: 10.1021/jp202933u  doi: 10.1021/jp202933u

    20. [20]

      Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Nat. Rev. Methods Primers 2021, 1 (1), 5. doi: 10.1038/s43586-020-00005-y  doi: 10.1038/s43586-020-00005-y

    21. [21]

      Cheng, T.; Sun, L. Z.; Liu, Z. R.; Ding, F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2012006  doi: 10.3866/PKU.WHXB202012006

    22. [22]

      Song, Y. Q.; Zou, W. T.; Lu, Q.; Lin, L.; Liu, Z. F. Small 2021, 17 (48), 2007600. doi: 10.1002/smll.202007600  doi: 10.1002/smll.202007600

    23. [23]

      Ferreira, J. P. J. G.; Branco, F. A. B. Exp. Tech. 2007, 31 (3), 64. doi: 10.1111/j.1747-1567.2007.00153.x  doi: 10.1111/j.1747-1567.2007.00153.x

    24. [24]

      Ou, Y.; Zhu, D.; Zhang, H.; Huang, L.; Yao, Y. M.; Li, G. S.; Mobasher, B. Polymers 2016, 8 (5), 196. doi: 10.3390/polym8050196  doi: 10.3390/polym8050196

    25. [25]

      Guo, J. Y.; Zhao, Y. M.; Wu, C. J.; Li, W. J.; Yang, J. Y.; Zhang, L. J.; Su, L. J. Mater. Rep. 2020, 34 (24), 24019. doi: 10.11896/cldb.19070145  doi: 10.11896/cldb.19070145

    26. [26]

      Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Adv. Mater. 2019, 31 (9), 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    27. [27]

      Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Phys. Rev. B 2001, 64 (8), 085333. doi: 10.1103/PhysRevB.64.085333  doi: 10.1103/PhysRevB.64.085333

    28. [28]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z.; et al. Nat. Photonics 2019, 13 (11), 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    29. [29]

      Cheng, Y.; Yu, W. T.; Xie, J.; Wang, R. Y.; Cui, G.; Cheng, X.; Li, M. W.; Wang, K.; Li, J. L.; Sun, Z. P.; et al. ACS Photonics 2022, 9 (3), 961. doi: 10.1021/acsphotonics.1c01823  doi: 10.1021/acsphotonics.1c01823

    30. [30]

      Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Rümmeli, M. H.; et al. Nano Lett. 2015, 15 (9), 5846. doi: 10.1021/acs.nanolett.5b01936  doi: 10.1021/acs.nanolett.5b01936

    31. [31]

      Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A.; et al. ACS Nano 2016, 10 (12), 11136. doi: 10.1021/acsnano.6b06066  doi: 10.1021/acsnano.6b06066

    32. [32]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38 (2), 2006046  doi: 10.3866/PKU.WHXB202006046

    33. [33]

      Cui, G.; Cheng, Y.; Liu, C.; Huang, K. W.; Li, J. L.; Wang, P. X.; Duan, X. J.; Chen, K.; Liu, K. H.; Liu, Z. F. ACS Nano 2020, 14 (5), 5938. doi: 10.1021/acsnano.0c01298  doi: 10.1021/acsnano.0c01298

    34. [34]

      Xie, Y. D.; Liu, S.; Huang, K. W.; Chen, B. B.; Shi, P. C.; Chen, Z. L.; Liu, B. Z.; Liu, K. H.; Wu, Z. Q.; Chen, K.; et al. Adv. Mater. 2022, 34 (30), 2202982. doi: 10.1002/adma.202202982  doi: 10.1002/adma.202202982

    35. [35]

      Yuan, H.; Liu, R. J.; Cheng, S. T.; Li, W. J.; Ma, M. Y.; Huang, K. W.; Li, J. L.; Cheng, Y.; Wang, K.; Yang, Y. Y.; et al. Adv. Mater. 2023, 35 (18), 2209897. doi: 10.1002/adma.202209897  doi: 10.1002/adma.202209897

    36. [36]

      Liu, R. J.; Yuan, H.; Li, J. L.; Huang, K. W.; Wang, K.; Cheng, Y.; Cheng, S. T.; Li, W. J.; Jiang, J.; Tu, C.; et al. Small Methods 2022, 6 (7), e2200499. doi: 10.1002/smtd.202200499  doi: 10.1002/smtd.202200499

    37. [37]

      Yuan, H.; Zhang, H.; Huang, K. W.; Cheng, Y.; Wang, K.; Cheng, S. T.; Li, W. J.; Jiang, J.; Li, J. L.; Tu, C.; et al. ACS nano 2022, 16 (2), 2577. doi: 10.1021/acsnano.1c09269  doi: 10.1021/acsnano.1c09269

    38. [38]

      Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L.; et al. Adv. Mater. 2015, 27 (47), 7839. doi: 10.1002/adma.201504229  doi: 10.1002/adma.201504229

    39. [39]

      Chen, X. D.; Chen, Z.; Jiang, W. S.; Zhang, C.; Sun, J.; Wang, H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H.; et al. Adv. Mater. 2017, 29 (1), 1603428. doi: 10.1002/adma.201603428  doi: 10.1002/adma.201603428

    40. [40]

      Chen, Z. L.; Xie, C. Y.; Wang, W. D.; Zhao, J. P.; Liu, B. Y.; Shan, J. Y.; Wang, X. Y.; Hong, M.; Lin, L.; Huang, L.; et al. Sci. Adv. 2021, 7 (47), eabk0115. doi: 10.1126/sciadv.abk0115  doi: 10.1126/sciadv.abk0115

    41. [41]

      Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F.; et al. Adv. Mater. 2017, 29 (32), 1701325. doi: 10.1002/adma.201701325  doi: 10.1002/adma.201701325

    42. [42]

      Rummeli, M. H.; Bachmatiuk, A.; Scott, A.; Borrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Buchner, B. ACS Nano 2010, 4 (7), 4206. doi: 10.1021/nn100971s  doi: 10.1021/nn100971s

    43. [43]

      Sun, L. Z.; Chen, B. H.; Wang, W. D.; Li, Y. L. Z.; Zeng, X. Z.; Liu, H. Y.; Liang, Y.; Zhao, Z. Y.; Cai, A. l.; Zhang, R.; et al. ACS Nano 2022, 16 (1), 285. doi: 10.1021/acsnano.1c06285  doi: 10.1021/acsnano.1c06285

    44. [44]

      Jiang, Y. X.; Lou, H. F.; Xie, H. F.; Li, T. J.; Song, K. X.; Liu, X. F.; Yun, X. B.; Wang, H.; Xiao, Z.; Li, Z. Chin. J. Eng. Sci. 2020, 22 (5), 084. doi: 10.15302/j-sscae-2020.05.015  doi: 10.15302/j-sscae-2020.05.015

    45. [45]

      Yang, M.; Liu, Y.; Fan, T. X.; Zhang, D. Prog. Mater. Sci. 2020, 110, 100652. doi: 10.1016/j.pmatsci.2020.100652  doi: 10.1016/j.pmatsci.2020.100652

    46. [46]

      Cao, M.; Xiong, D. B.; Yang, L.; Li, S. S.; Xie, Y. Q.; Guo, Q.; Li, Z. Q.; Adams, H.; Gu, J. J.; Fan, T. X.; et al. Adv. Funct. Mater. 2019, 29 (17), 1806792. doi: 10.1002/adfm.201806792  doi: 10.1002/adfm.201806792

    47. [47]

      Kashani, H.; Kim, C.; Rudolf, C.; Perkins, F. K.; Cleveland, E. R.; Kang, W. Adv. Mater. 2021, 33 (51), 2104208. doi: 10.1002/adma.202104208  doi: 10.1002/adma.202104208

    48. [48]

      Zhang, X.; Xu, Y. X.; Wang, M. C.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; Lin, D.; Zhu, F. L.; He, C. N. Nat. Commun. 2020, 11 (1), 2775. doi: 10.1038/s41467-020-16490-4  doi: 10.1038/s41467-020-16490-4

    49. [49]

      Tang, Y. L.; Peng, P.; Wang, S. Y.; Liu, Z. H.; Zu, X. T.; Yu, Q. K. Chem. Mater. 2017, 29 (19), 8404. doi: 10.1021/acs.chemmater.7b02958  doi: 10.1021/acs.chemmater.7b02958

    50. [50]

      Wang, M. Z.; Tang, M.; Chen, S. L.; Ci, H. N.; Wang, K. X.; Shi, L. R.; Lin, L.; Ren, H. Y.; Shan, J. Y.; Gao, P.; et al. Adv. Mater. 2017, 29 (47), 1703882. doi: 10.1002/adma.201703882  doi: 10.1002/adma.201703882

    51. [51]

      Wang, K.; Cheng, S. T.; Hu, Q. M.; Yu, F.; Cheng, Y.; Huang, K. W.; Yuan, H.; Jiang, J.; Li, W. J.; Li, J. L.; et al. Nano Res. 2021, 15 (11), 9727. doi: 10.1007/s12274-021-3953-3  doi: 10.1007/s12274-021-3953-3

    52. [52]

      Zhang, X.; Shi, C. S.; Liu, E. Z.; He, F.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Bacsa, W.; Zhao, N. Q.; He, C. N. Nanoscale 2017, 9 (33), 11929. doi: 10.1039/c6nr07335b  doi: 10.1039/c6nr07335b

    53. [53]

      Chu, K.; Wang, X.; Wang, F.; Li, Y.; Huang, D.; Liu, H.; Ma, W.; Liu, F.; Zhang, H. Carbon 2018, 127, 102. doi: 10.1016/j.carbon.2017.10.099  doi: 10.1016/j.carbon.2017.10.099

    54. [54]

      Zhang, Q.; Yi, Z. L.; Liu, Y.; Han, P.; Mei, J. Appl. Surf. Sci. 2021, 541, 148524. doi: 10.1016/j.apsusc.2020.148524  doi: 10.1016/j.apsusc.2020.148524

    55. [55]

      Samal, A.; Kushwaha, A. K.; Das, D.; Sahoo, M. R.; Lanzillo, N. A.; Nayak, S. K. Adv. Eng. Mater. 2023, 25 (13), 2201192. doi: 10.1002/adem.202201192  doi: 10.1002/adem.202201192

    56. [56]

      Li, Y. L. Z.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y.; et al. Adv. Mater. 2020, 32 (29), 2002034. doi: 10.1002/adma.202002034  doi: 10.1002/adma.202002034

    57. [57]

      Li, Y. L. Z.; Liu, H. Y.; Chang, Z. H.; Li, H. X.; Wang, S. X.; Lin, L.; Peng, H. L.; Wei, Y. J.; Sun, L. Z.; Liu, Z. F. Adv. Mater. 2022, 34, 2201188. doi: 10.1002/adma.202201188  doi: 10.1002/adma.202201188

    58. [58]

      Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H.; et al. ACS Nano 2017, 11 (12), 12337. doi: 10.1021/acsnano.7b06196  doi: 10.1021/acsnano.7b06196

    59. [59]

      Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M.; Chatterjee, S.; et al. Nature 2021, 596 (7873), 519. doi: 10.1038/s41586-021-03753-3  doi: 10.1038/s41586-021-03753-3

    60. [60]

      Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B.; et al. Nano Res. 2016, 9 (10), 3048. doi: 10.1007/s12274-016-1187-6  doi: 10.1007/s12274-016-1187-6

    61. [61]

      Tang, S. J.; Wang, H. M.; Wang, H. S.; Sun, Q. J.; Zhang, X. Y.; Cong, C. X.; Xie, H.; Liu, X. Y.; Zhou, X. H.; Huang, F. Q.; et al. Nat. Commun. 2015, 6, 6499. doi: 10.1038/ncomms7499  doi: 10.1038/ncomms7499

    62. [62]

      Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S.; et al. ACS Nano 2013, 7 (1), 385. doi: 10.1021/nn305486x  doi: 10.1021/nn305486x

    63. [63]

      Ma, Z. T.; Chen, H.; Song, X. F.; Chen, B. H.; Li, Q.; Li, Y. L. Z.; Liu, H. Y.; Jia, K. C.; Huang, S. H. Nano Res. 2022, 15, 9741. doi: 10.1007/s12274-022-4609-7  doi: 10.1007/s12274-022-4609-7

    64. [64]

      Chen, H.; Zhang, J. C.; Liu, X. T.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38 (1), 2101053.  doi: 10.3866/PKU.WHXB202101053

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

Metrics
  • PDF Downloads(2)
  • Abstract views(135)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return