Citation: Ye Wang,  Ruixiang Ge,  Xiang Liu,  Jing Li,  Haohong Duan. An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230701. doi: 10.3866/PKU.WHXB202307019 shu

An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol

  • Corresponding author: Haohong Duan, hhduan@mail.tsinghua.edu.cn
  • Received Date: 11 July 2023
    Revised Date: 25 August 2023
    Accepted Date: 25 August 2023

    Fund Project: This project was supported by Beijing Natural Science Foundation, China (JQ22003), the National Natural Science Foundation of China (21978147, 21935001) and Beijing Municipal Natural Science Foundation, China (2214063).

  • Nucleophile oxidation reaction (NOR) is emerging as a significant approach for the sustainable production of value-added chemicals. Among the various types, electrocatalytic glycerol oxidation reaction (GOR) stands out as a crucial method for producing C1 to C3 chemicals including formic acid (FA). Non-noble-metal-based (oxy)hydroxides have found extensive use in GOR, yet achieving industrially-demanded current densities (> 300 mA·cm-2) at moderate potentials remains a challenge. It is well documented that GOR catalyzed by (oxy)hydroxides follows an indirect oxidation mechanism. Specifically, the nucleophile, glycerol, undergoes oxidation by the electrogenerated oxyhydroxides with electrophilic adsorption oxygen. Therefore, comprehending the evolution of the electrocatalyst in GOR is critically important. In this paper, we have developed molybdenum-doped nickel oxyhydroxides (Mo-NiOOH) through cyclic voltammetry (CV) activation of nickel molybdate (NiMoO4). We demonstrated that Mo species leach from NiMoO4, and the resulting Mo-NiOOH retains the nanosheet array morphology of NiMoO4. We subjected the freshly prepared Mo-NiOOH to systematic characterizations employing techniques such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) mapping, Raman spectroscopy, inductively coupled plasma-mass spectrometry (ICP-MS), and X-ray photoelectron spectroscopy (XPS). The above structural characterizations confirm that Mo-NiOOH inherits the nanosheet array morphology of the NiMoO4 precursor with reduced Mo content, thereby indicating the phase reconstruction from oxides to oxyhydroxides post CV activation. Furthermore, the Ni3+/Ni2+ ratio in Mo-NiOOH surpasses that in NiOOH derived from CV activation of Ni(OH)2. Mo-NiOOH exhibits elevated electrochemically active surface areas (ECSAs) and a higher Ni3+/Ni2+ ratio compared to NiOOH obtained through CV activation of Ni(OH)2, facilitating the Mo-NiOOH exhibits higher ratio of Ni3+/Ni2+, higher electrochemically active surface areas (ECSAs) than NiOOH, and facilitated oxidation of Ni2+ to Ni3+. Consequently, Mo-NiOOH requires a lower applied potential than NiOOH (1.51 V versus 1.84 V vs. reversible hydrogen electrode (RHE)) to achieve a high current density (400 mA·cm-2). Additionally, Mo-NiOOH demonstrates higher Faradaic efficiency towards formate (FEformate) in contrast to NiOOH (84.7% versus 59.6%), indicating enhanced carbon-carbon (C―C) bond cleavage due to Mo doping. Multi-potential step (STEP) experiments indicate that GOR catalyzed by NiOOH and Mo-NiOOH follows a similar indirect oxidation mechanism mediated by oxyhydroxides. Operando electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy confirmed that Mo doping in NiOOH accelerates GOR kinetics and the oxidation of Ni2+ to Ni3+, contributing to the higher activity and formate selectivity of Mo-NiOOH than NiOOH. The strategy of surface modulation of oxyhydroxides through leaching of soluble anions offers guidelines for the rational design of high-performance NOR electrocatalysts.
  • 加载中
    1. [1]

      (1) Zhou, H.; Li, Z.; Kong, X.; Duan, H. Chem. J. Chin. Univ. 2020, 41, 1449. doi:10.7503/cjcu20200212

    2. [2]

      (2) Zeng, L.; Chen, Y.; Sun, M.; Huang, Q.; Sun, K.; Ma, J.; Li, J.; Tan, H.; Li, M.; Pan, Y.; et al. J. Am. Chem. Soc. 2023, 145, 17577. doi:10.1021/jacs.3c02570

    3. [3]

      (3) Wang, T.; Cao, X.; Jiao, L. Angew. Chem. Int. Ed. 2022, 61. doi:10.1002/anie.202213328

    4. [4]

      (4) Wang, F.; Duan, H. Chem Catal. 2022, 2, 644. doi:10.1016/j.checat.2022.03.014

    5. [5]

      (5) Zhou, P.; Zhang, J. Sci. China Chem. 2023, 66, 1011. doi:10.1007/s11426-022-1511-2

    6. [6]

      (6) Sheng, H.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Nat. Catal. 2022, 5, 716. doi:10.1038/s41929-022-00826-y

    7. [7]

      (7) Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. ACS Catal. 2012, 2, 759. doi:10.1021/cs200599g

    8. [8]

      (8) Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723. doi:10.1016/j.apcatb.2021.120723

    9. [9]

      (9) Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. J. Catal. 2017, 356, 14. doi:10.1016/j.jcat.2017.10.010

    10. [10]

      (10) Yan, Y.; Zhou, H.; Xu, S.-M.; Yang, J.; Hao, P.; Cai, X.; Ren, Y.; Xu, M.; Kong, X.; Shao, M.; et al. J. Am. Chem. Soc. 2023, 145, 6144. doi:10.1021/jacs.2c11861

    11. [11]

      (11) Morales, D. M.; Jambrec, D.; Kazakova, M. A.; Braun, M.; Sikdar, N.; Koul, A.; Brix, A. C.; Seisel, S.; Andronescu, C.; Schuhmann, W. ACS Catal. 2022, 12, 982. doi:10.1021/acscatal.1c04150

    12. [12]

      (12) Wu, J. X.; Liu, X.; Hao, Y. M.; Wang, S. Y.; Wang, R.; Du, W.; Cha, S. S.; Ma, X. Y.; Yang, X. J.; Gong, M. Angew. Chem. Int. Ed. 2023, 62, e202216083. doi:10.1002/anie.202216083

    13. [13]

      (13) Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464. doi:10.1002/anie.202107510

    14. [14]

      (14) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335. doi:10.1038/s41467-019-13375-z

    15. [15]

      (15) Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am. Chem. Soc. 2022, 144, 7224. doi:10.1021/jacs.1c13740

    16. [16]

      (16) Bulushev, D. A.; Ross, J. R. H. ChemSusChem 2018, 11, 821. doi:10.1002/cssc.201702075

    17. [17]

      (17) Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. J. Am. Chem. Soc. 2020, 142, 3600. doi:10.1021/jacs.9b13708

    18. [18]

      (18) Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Angew. Chem. Int. Ed. 2019, 58, 17458. doi:10.1002/anie.201910716

    19. [19]

      (19) He, J.; Zou, Y.; Huang, Y.; Li, C.; Liu, Y.; Zhou, L.; Dong, C.-L.; Lu, X.; Wang, S. Sci. China Chem. 2020, 63, 1684. doi:10.1007/s11426-020-9844-2

    20. [20]

      (20) Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K. Green Chem. 2021, 23, 4034. doi:10.1039/d1gc00901j

    21. [21]

      (21) Goetz, M. K.; Bender, M. T.; Choi, K.-S. Nat. Commun. 2022, 13. doi:10.1038/s41467-022-33637-7

    22. [22]

      (22) Fu, G.; Kang, X.; Zhang, Y.; Yang, X.; Wang, L.; Fu, X.-Z.; Zhang, J.; Luo, J.-L.; Liu, J. Nano-Micro Lett. 2022, 14, 200. doi:10.1007/s40820-022-00940-3

    23. [23]

      (23) Böhm, D.; Beetz, M.; Kutz, C.; Zhang, S.; Scheu, C.; Bein, T.; Fattakhova-Rohlfing, D. Chem. Mater. 2020, 32, 10394. doi:10.1021/acs.chemmater.0c02851

    24. [24]

      (24) Zhao, P.; Ma, L.; Guo, J. J. Phys. Chem. Solids 2022, 164, 110634. doi:10.1016/j.jpcs.2022.110634

    25. [25]

      (25) Qin, H.; Ye, Y.; Li, J.; Jia, W.; Zheng, S.; Cao, X.; Lin, G.; Jiao, L. Adv. Funct. Mater. 2022, 33, 2209698. doi:10.1002/adfm.202209698

    26. [26]

      (26) Wang, F.; Zhang, K.; Li, S.; Zha, Q.; Ni, Y. ACS Sustain. Chem. Eng. 2022, 10, 10383. doi:10.1021/acssuschemeng.2c03166

    27. [27]

      (27) Yan, J.; Kong, L.; Ji, Y.; White, J.; Li, Y.; Zhang, J.; An, P.; Liu, S.; Lee, S.-T.; Ma, T. Nat. Commun. 2019, 10, 2149. doi:10.1038/s41467-019-09845-z

    28. [28]

      (28) Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Chem 2020, 6, 2974. doi:10.1016/j.chempr.2020.07.022

    29. [29]

      (29) Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K.-S. J. Am. Chem. Soc. 2020, 142, 21538. doi:10.1021/jacs.0c10924

    30. [30]

      (30) Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996. doi:10.1002/cjoc.201900467

    31. [31]

      (31) Duan, Y.; Lee, J. Y.; Xi, S.; Sun, Y.; Ge, J.; Ong, S. J. H.; Chen, Y.; Dou, S.; Meng, F.; Diao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 7418. doi:10.1002/anie.202015060

    32. [32]

      (32) Wang, Y.; Zhu, Y.; Zhao, S.; She, S.; Zhang, F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L.; Mao, H.; et al. Matter 2020, 3, 2124. doi:10.1016/j.matt.2020.09.016

    33. [33]

      (33) Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Cell Rep. Phys. Sci. 2020, 1, 100241. doi:10.1016/j.xcrp.2020.100241

    34. [34]

      (34) Lin, T.-W.; Dai, C.-S.; Hung, K.-C. Sci. Rep. 2014, 4, 7274. doi:10.1038/srep07274

    35. [35]

      (35) Kuai, C.; Zhang, Y.; Han, L.; Xin, H. L.; Sun, C.-J.; Nordlund, D.; Qiao, S.; Du, X.-W.; Lin, F. J. Mater. Chem. A 2020, 8, 10747. doi:10.1039/d0ta04244g

    36. [36]

      (36) Yang, C.; Wang, H.; Lu, S.; Wu, C.; Liu, Y.; Tan, Q.; Liang, D.; Xiang, Y. Electrochim. Acta 2015, 182, 834. doi:10.1016/j.electacta.2015.09.155

    37. [37]

      (37) Kim, J.-H.; Kim, K. J.; Park, M.-S.; Lee, N. J.; Hwang, U.; Kim, H.; Kim, Y.-J. Electrochem. Commun. 2011, 13, 997. doi:10.1016/j.elecom.2011.06.022

    38. [38]

      (38) Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S. D. Green Chem. 2021, 23, 8061. doi:10.1039/d1gc02031e

    39. [39]

      (39) Liu, B.; Zheng, Z.; Liu, Y.; Zhang, M.; Wang, Y.; Wan, Y.; Yan, K. J. Energy Chem. 2023, 78, 412. doi:10.1016/j.jechem.2022.11.041

    40. [40]

      (40) Chen, D.; Ding, Y.; Cao, X.; Wang, L.; Lee, H.; Lin, G.; Li, W.; Ding, G.; Sun, L. Angew. Chem. Int. Ed. 2023, e202309478. doi:10.1002/anie.202309478

    41. [41]

      (41) Sun, Y.; Shin, H.; Wang, F.; Tian, B.; Chiang, C.-W.; Liu, S.; Li, X.; Wang, Y.; Tang, L.; Goddard, W. A.; et al. J. Am. Chem. Soc. 2022, 144, 15185. doi:10.1021/jacs.2c05403

    42. [42]

      (42) Tao, S.; Wen, Q.; Jaegermann, W.; Kaiser, B. ACS Catal. 2022, 12, 1508. doi:10.1021/acscatal.1c04589

    43. [43]

      (43) Deabate, S.; Fourgeot, F.; Henn, F. J. Power Sources 2000, 87, 125. doi:10.1016/S0378-7753(99)00437-1

    44. [44]

      (44) Zhou, D.; Wang, S.; Jia, Y.; Xiong, X.; Yang, H.; Liu, S.; Tang, J.; Zhang, J.; Liu, D.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 736. doi:10.1002/anie.201809689

    45. [45]

      (45) Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. Adv. Energy Mater. 2021, 11, 2101324. doi:10.1002/aenm.202101324

    46. [46]

      (46) Dürr, R. N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarström, L.; Edvinsson, T. ACS Nano 2021, 15, 13504. doi:10.1021/acsnano.1c04126

    47. [47]

    48. [48]

      (48) Chen, P.; Cao, C.; Ding, C.; Yin, Z.; Qi, S.; Guo, J.; Zhang, M.; Sun, Z. J. Power Sources 2022, 521, 230920. doi:10.1016/j.jpowsour.2021.230920

    49. [49]

      (49) Wang, L.; Zhang, L.; Ma, W.; Wan, H.; Zhang, X.; Zhang, X.; Jiang, S.; Zheng, J. Y.; Zhou, Z. Adv. Funct. Mater. 2022, 32, 2203342. doi:10.1002/adfm.202203342

    50. [50]

      (50) Menezes, P. W.; Yao, S.; Beltrán-Suito, R.; Hausmann, J. N.; Menezes, P. V.; Driess, M. Angew. Chem. Int. Ed. 2021, 133, 4690. doi:10.1002/anie.202014331

    51. [51]

      (51) Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; et al. J. Am. Chem. Soc. 2015, 137, 5053. doi:10.1021/jacs.5b00256

    52. [52]

      (52) Zheng, X.; Cao, Y.; Han, X.; Liu, H.; Wang, J.; Zhang, Z.; Wu, X.; Zhong, C.; Hu, W.; Deng, Y. Sci. China Mater. 2019, 62, 1096. doi:10.1007/s40843-019-9413-5

    53. [53]

      (53) Owusu, K. A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C.; Wei, Q.; et al. Nat. Commun. 2017, 8, 14264. doi:10.1038/ncomms14264

    54. [54]

      (54) Pang, X.; Bai, H.; Zhao, H.; Fan, W.; Shi, W. ACS Catal. 2022, 12, 1545. doi:10.1021/acscatal.1c04880

    55. [55]

      (55) Idriss, H. Surf. Sci. 2021, 712, 121894. doi:10.1016/j.susc.2021.121894

    56. [56]

      (56) Xiao, Z.; Huang, Y.-C.; Dong, C.-L.; Xie, C.; Liu, Z.; Du, S.; Chen, W.; Yan, D.; Tao, L.; Shu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 12087. doi:10.1021/jacs.0c00257

    57. [57]

      (57) Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. Nat. Commun. 2023, 14. doi:10.1038/s41467-023-37679-3

    58. [58]

      (58) Chen, Y.-Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z.-H.; Wan, L.-J.; Hu, J.-S. Adv. Mater. 2017, 29, 1703311. doi:10.1002/adma.201703311

    59. [59]

      (59) Kong, X.; Zhang, C.; Hwang, S. Y.; Chen, Q.; Peng, Z. Small 2017, 13, 1700334. doi:10.1002/smll.201700334

    60. [60]

      (60) Deng, X.; Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Angew. Chem. Int. Ed. 2021, 60, 20535. doi:10.1002/anie.202108955

    61. [61]

    62. [62]

      (62) Zhang, Y.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. Adv. Energy Mater. 2016, 6, 1600221. doi:10.1002/aenm.201600221

    63. [63]

      (63) Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi:10.1039/c6cs00328a

    64. [64]

      (64) Wu, J.; Li, J.; Li, Y.; Ma, X. Y.; Zhang, W. Y.; Hao, Y.; Cai, W. B.; Liu, Z. P.; Gong, M. Angew. Chem. Int. Ed. 2022, 61, e202113362. doi:10.1002/anie.202113362

    65. [65]

      (65) Ge, R.; Li, J.; Duan, H. Sci. China Mater. 2022, 65, 3273. doi:10.1007/s40843-022-2076-y

    66. [66]

      (66) Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12, 12432. doi:10.1021/acscatal.2c03162

    67. [67]

      (67) Ge, R.; Wang, Y.; Li, Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K.; Chen, F.; Zhou, J.; Duan, H. Angew. Chem. Int. Ed. 2022, 61, e202200211. doi:10.1002/anie.202200211

    68. [68]

      (68) Zhou, P.; Lv, X.; Tao, S.; Wu, J.; Wang, H.; Wei, X.; Wang, T.; Zhou, B.; Lu, Y.; Frauenheim, T.; et al. Adv. Mater. 2022, 2204089. doi:10.1002/adma.202204089

    69. [69]

      (69) Xue, X.; Wang, Y.; Zhou, L.; Ge, R.; Yang, J.; Kong, X.; Xu, M.; Li, Z.; Ma, L.; Duan, H. Chin. J. Chem. 2022, 40, 2741. doi:10.1002/cjoc.202200414

    70. [70]

      (70) Zhu, Y.-Q.; Zhou, H.; Dong, J.; Xu, S.-M.; Xu, M.; Zheng, L.; Xu, Q.; Ma, L.; Li, Z.; Shao, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202219048. doi:10.1002/anie.202219048

    71. [71]

      (71) Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 22908. doi:10.1002/anie.202109211

    72. [72]

      (72) Chen, W.; Wang, Y.; Wu, B.; Shi, J.; Li, Y.; Xu, L.; Xie, C.; Zhou, W.; Huang, Y. C.; Wang, T.; et al. Adv. Mater. 2022, 34, 2105320. doi:10.1002/adma.202105320

    73. [73]

      (73) Wang, H.-Y.; Hung, S.-F.; Chen, H.-Y.; Chan, T.-S.; Chen, H. M.; Liu, B. J. Am. Chem. Soc. 2016, 138, 36. doi:10.1021/jacs.5b10525

    74. [74]

      (74) Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13, 4602. doi:10.1038/s41467-022-32443-5

    75. [75]

      (75) Tang, L.; Xia, M.; Cao, S.; Bo, X.; Zhang, S.; Zhang, Y.; Liu, X.; Zhang, L.; Yu, L.; Deng, D. Nano Energy 2022, 101, 107562. doi:10.1016/j.nanoen.2022.107562

    76. [76]

      (76) Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 20253. doi:10.1002/anie.202107390

    77. [77]

      (77) Wang, S.; Chen, W.; Xu, L.; Zhu, X.; Huang, Y.-C.; Zhou, W.; Wang, D.; Zhou, Y.; Du, S.; Li, Q.; et al. Angew. Chem. Int. Ed. 2020, 60, 7297. doi:10.1002/anie.202015773

    78. [78]

      (78) Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13, 4602. doi:10.1038/s41467-022-32443-5

    79. [79]

      (79) Kuang, Z.; Liu, S.; Li, X.; Wang, M.; Ren, X.; Ding, J.; Ge, R.; Zhou, W.; Rykov, A. I.; Sougrati, M. T.; et al. J. Energy Chem. 2021, 57, 212. doi:10.1016/j.jechem.2020.09.014

    80. [80]

      (80) Xu, J.; Wang, B.-X.; Lyu, D.; Wang, T.; Wang, Z. Int. J. Hydrog. Energy 2023, 48, 10724. doi:10.1016/j.ijhydene.2022.12.118

    81. [81]

      (81) Bai, L.; Lee, S.; Hu, X. Angew. Chem. Int. Ed. 2021, 60, 3095. doi:10.1002/anie.202011388

    82. [82]

      (82) Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi:10.1002/anie.201915803

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    9. [9]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(171)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return