Citation: Zhiyang Li,  Hui Deng,  Xinqi Cai,  Zhuo Chen. Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230605. doi: 10.3866/PKU.WHXB202306051 shu

Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics

  • Corresponding author: Xinqi Cai,  Zhuo Chen, 
  • Received Date: 30 June 2023
    Revised Date: 23 August 2023
    Accepted Date: 24 August 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2022YFC2403500) and the National Natural Science Foundation of China (22225401).

  • In recent years, there has been significant interest in the potential of probiotics to inhibit the growth of Helicobacter pylori (H. pylori), a bacterium known to cause gastric infections. However, the effectiveness of probiotics in combating H. pylori is often hindered by their susceptibility to gastric acid, making it challenging for them to survive and remain active in the stomach. To address this issue, researchers have turned to hydrogel encapsulation as a promising strategy to protect probiotics. Therefore, we designed a hydrogel-probiotic capsules possessed both acid resistance and magnetic drive properties to protect and targeted-deliver probiotics in gastric conditions. The probiotic capsules with core-shell structure prepared by the electrostatic spray method can encapsule the probiotic without damaging the activity of probiotic. The probiotic capsule was composed of a calcium alginate/CaCO3/FeCo@G (iron-cobalt magnetic graphitic nanocapsule) shell and a Laj (Lactobacillus Johnsonii, a kind of probiotics) core (Alg/CaCO3/FeCo@G-Laj, ACFL). The capsules were thoroughly characterized using field emission scanning electron microscopy and cell microscopic imaging to verify their morphology and their ability to encapsulate probiotics. The results indicated that ACFL capsules maintained their integrity during a 2-h incubation in DPBS (Dulbecco’s Phosphate-Buffered Saline) without releasing the probiotics, underscoring their robust encapsulation capacity. Moreover, ACFL could sustain the activity of Laj in SGF (simulated gastric fluid) for a long time by locally neutralizing the gastric acid through CaCO3. It’s worth noting that Laj exhibits considerable H. pylori inhibition properties by secreting lactic acid to damage H. pylori and by competing adsorption for gastric epithelial cells with H. pylori. ACFL capsules demonstrated significant H. pylori inhibition properties even after exposure to SGF, further supporting the protective effect of the encapsulation strategy on probiotic activity. Moreover, in order to achieve efficient bactericidal performance in the real system, it is necessary to design a power device to give the capsule active propulsion ability to realize targeted delivery of Laj. FeCo@G, which possesses brilliant stability in acid environment on account of the protective graphitic shell, was integrated in ACFL for efficient magnetically navigated delivery. The results show that ACFL can reach a velocity of 3 cm·s-1 under the guidance of an external magnetic field, which confirms the ability of ACFL capsule to be potent tool for target delivery of probiotics. In conclusion, ACFL capsules hold promise for effectively targeting the gastric wall and releasing active probiotics to combat H. pylori infections. The combination of acid-neutralizing properties and magnetic navigation not only maintains the viability of the probiotics but also minimizes disruption to gastric homeostasis. This innovative approach offers a new avenue for protecting and controlling the release of active agents in the challenging gastric environment, opening up possibilities for improved treatments and interventions.
  • 加载中
    1. [1]

      (1) Miehlke, S.; Hackelsberger, A.; Meining, A.; Hatz, R.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Bayerdorffer, E. Br. J. Cancer 1998, 78 (2), 263. doi:10.1038/bjc.1998.475

    2. [2]

      (2) Kao, C. Y.; Sheu, B. S.; Wu, J. J. Biomed. J. 2016, 39 (1), 14. doi:10.1016/j.bj.2015.06.002

    3. [3]

      (3) Yazbek, P. B.; Trindade, A. B.; Chin, C. M.; Dos Santos, J. L. Dig. Dis. Sci. 2015, 60 (10), 2901. doi:10.1007/s10620-015-3712-y

    4. [4]

      (4) Poulsen, A. H.; Christensen, S.; McLaughlin, J. K.; Thomsen, R. W.; Sorensen, H. T.; Olsen, J. H.; Friis, S. Br. J. Cancer 2009, 100 (9), 1503. doi:10.1038/sj.bjc.6605024

    5. [5]

      (5) Smith, S. M.; O'Morain, C.; McNamara, D. World J. Gastroenterol. 2014, 20 (29), 9912. doi:10.3748/wjg.v20.i29.9912

    6. [6]

      (6) Mestre, A.; Sathiya Narayanan, R.; Rivas, D.; John, J.; Abdulqader, M. A.; Khanna, T.; Chakinala, R. C.; Gupta, S. Cureus 2022, 14 (6), e26463. doi:10.7759/cureus.26463

    7. [7]

      (7) Felley, C.; Michetti, P. Res. Clin. Gastroenterol. 2003, 17 (5), 785. doi:10.1016/s1521-6918(03)00070-2

    8. [8]

      (8) Midolo, P. D.; Lambert, J. R.; Hull, R.; Luo, F.; Grayson, M. L. J. Appl. Bacteriol. 1995, 79 (4), 475. doi:10.1111/j.13652672.1995.tb03164.x

    9. [9]

      (9) Kim, J. E.; Kim, M. S.; Yoon, Y. S.; Chung, M. J.; Yum, D. Y. J. Microbiol. 2014, 52 (11), 955. doi:10.1007/s12275-014-4355-y

    10. [10]

      (10) Lin, W. H.; Wu, C. R.; Fang, T. J.; Guo, J. T.; Huang, S. Y.; Lee, M. S.; Yang, H. L. J. Sci. Food Agric. 2011, 91 (8), 1424. doi:10.1002/jsfa.4327

    11. [11]

      (11) Dore, M. P.; Cuccu, M.; Pes, G. M.; Manca, A.; Graham, D. Y. Intern. Emerg. Med. 2013, 9 (6), 649. doi:10.1007/s11739-013-1013-z

    12. [12]

      (12) Xu, C.; Ban, Q.; Wang, W.; Hou, J.; Jiang, Z. J. Control. Release 2022, 349, 184. doi:10.1016/j.jconrel.2022.06.061

    13. [13]

      (13) Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D. L.; Hoorfar, M. Food Hydrocoll. 2021, 120, 106882. doi:10.1016/j.foodhyd.2021.106882

    14. [14]

      (14) Ghibaudo, F.; Gerbino, E.; Viviana, C. D. O.; Gómez-Zavaglia, A. J. Funct. Foods 2017, 39, 299. doi:10.1016/j.jff.2017.10.028

    15. [15]

      (15) Liu, H.; Xie, M.; Nie, S. Food Front. 2020, 1 (1), 45. doi:10.1002/fft2.11

    16. [16]

      (16) Ni, F.; Luo, X.; Zhao, Z.; Yuan, J.; Song, Y.; Liu, C.; Huang, M.; Dong, L.; Xie, H.; Cai, L.; Ren, G.; Gu, Q. Int. J. Biol. Macromol. 2023, 224, 94. doi:10.1016/j.ijbiomac.2022.10.106

    17. [17]

      (17) Singu, B. D.; Bhushette, P. R.; Annapure, U. S. Food Biosci. 2020, 36, 100668. doi:10.1016/j.fbio.2020.100668

    18. [18]

      (18) Dong, Q. Y.; Chen, M. Y.; Xin, Y.; Qin, X. Y.; Cheng, Z.; Shi, L. E.; Tang, Z. X. Int. J. Food Sci. Technol. 2013, 48 (7), 1339. doi:10.1111/ijfs.12078

    19. [19]

      (19) Doherty, S. B.; Gee, V. L.; Ross, R. P.; Stanton, C.; Fitzgerald, G. F.; Brodkorb, A. Food Hydrocoll. 2011, 25 (6), 1604. doi:10.1016/j.foodhyd.2010.12.012

    20. [20]

    21. [21]

    22. [22]

      (22) Zhang, W.; He, X. J. Biomech. Eng. 2009, 131 (7), 074515. doi:10.1115/1.3153326

    23. [23]

      (23) Xu, C.; Ma, J.; Liu, Z.; Wang, W.; Liu, X.; Qian, S.; Chen, L.; Gu, L.; Sun, C.; Hou, J.; Jiang, Z. Food Chem. 2023, 402, 134253. doi:10.1016/j.foodchem.2022.134253

    24. [24]

      (24) Yao, M.; Xie, J.; Du, H.; McClements, D. J.; Xiao, H.; Li, L. Compr. Rev. Food Sci. Food Safety 2020, 19 (2), 857. doi:10.1111/1541-4337.12532

    25. [25]

      (25) Etchepare, M. d. A.; Raddatz, G. C.; Cichoski, A. J.; Flores, É. M. M.; Barin, J. S.; Queiroz Zepka, L.; Jacob-Lopes, E.; Grosso, C. R. F.; de Menezes, C. R. J. Funct. Foods 2016, 21, 321. doi:10.1016/j.jff.2015.12.025

    26. [26]

      (26) Peñalva, R.; Martínez-López, A. L.; Gamazo, C.; Gonzalez-Navarro, C. J.; González-Ferrero, C.; Virto-Resano, R.; Brotons-Canto, A.; Vitas, A. I.; Collantes, M.; Peñuelas, I.; et al. Food Hydrocoll. 2023, 136, 108213. doi:10.1016/j.foodhyd.2022.108213

    27. [27]

      (27) Hlaing, S. P.; Kim, J.; Lee, J.; Kwak, D.; Kim, H.; Yoo, J. W. Pharmaceutics 2020, 12 (7), 662. doi:10.3390/pharmaceutics12070662

    28. [28]

      (28) Fu, Q.; Zhang, X.; Zhang, S.; Fan, C.; Cai, Z.; Wang, L. Appl. Bionics Biomech. 2022, 2022, 2233417. doi:10.1155/2022/2233417

    29. [29]

    30. [30]

      (30) Kadiri, V. M.; Bussi, C.; Holle, A. W.; Son, K.; Kwon, H.; Schutz, G.; Gutierrez, M. G.; Fischer, P. Adv. Mater. 2020, 32 (25), e2001114. doi:10.1002/adma.202001114

    31. [31]

      (31) Xing, J.; Yin, T.; Li, S.; Xu, T.; Ma, A.; Chen, Z.; Luo, Y.; Lai, Z.; Lv, Y.; Pan, H.; et al. Adv. Funct. Mater. 2020, 31 (11), 2008262. doi:10.1002/adfm.202008262

    32. [32]

      (32) Chatzipirpiridis, G.; Ergeneman, O.; Pokki, J.; Ullrich, F.; Fusco, S.; Ortega, J. A.; Sivaraman, K. M.; Nelson, B. J.; Pane, S. Adv. Healthc. Mater. 2015, 4 (2), 209. doi:10.1002/adhm.201400256

    33. [33]

      (33) Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Sci. Robot 2019, 4, eaav8006. doi:10.1126/scirobotics.aav8006

    34. [34]

      (34) Zhang, L.; Zhang, L.; Deng, H.; Li, H.; Tang, W.; Guan, L.; Qiu, Y.; Donovan, M. J.; Chen, Z.; Tan, W. Nat. Commun. 2021, 12, 2002. doi:10.1038/s41467-021-22286-x

    35. [35]

      (35) Cai, X.; Xu, Y.; Zhao, L.; Xu, J.; Li, S.; Wen, C.; Xia, X.; Dong, Q.; Hu, X.; Wang, X.; et al. Nano Today 2021, 36, 101032. doi:10.1016/j.nantod.2020.101032

    36. [36]

      (36) Li, Y.; Hu, X.; Ding, D.; Zou, Y.; Xu, Y.; Wang, X.; Zhang, Y.; Chen, L.; Chen, Z.; Tan, W. Nat. Commun. 2017, 8, 15653. doi:10.1038/ncomms15653

    37. [37]

      (37) Cai, X.; Li, Z.; Zhou, W. J.; Deng, H.; Cao, X.; Xu, J.; Yin, Z.; Wang, S.; Xia, X.; Ma, C.; et al. Chem. Commun. 2023, 59, 5455. doi:10.1039/D3CC00933E

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    13. [13]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(0)
  • Abstract views(83)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return