Citation: Zhiyang Li, Hui Deng, Xinqi Cai, Zhuo Chen. Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230605. doi: 10.3866/PKU.WHXB202306051
-
In recent years, there has been significant interest in the potential of probiotics to inhibit the growth of Helicobacter pylori (H. pylori), a bacterium known to cause gastric infections. However, the effectiveness of probiotics in combating H. pylori is often hindered by their susceptibility to gastric acid, making it challenging for them to survive and remain active in the stomach. To address this issue, researchers have turned to hydrogel encapsulation as a promising strategy to protect probiotics. Therefore, we designed a hydrogel-probiotic capsules possessed both acid resistance and magnetic drive properties to protect and targeted-deliver probiotics in gastric conditions. The probiotic capsules with core-shell structure prepared by the electrostatic spray method can encapsule the probiotic without damaging the activity of probiotic. The probiotic capsule was composed of a calcium alginate/CaCO3/FeCo@G (iron-cobalt magnetic graphitic nanocapsule) shell and a Laj (Lactobacillus Johnsonii, a kind of probiotics) core (Alg/CaCO3/FeCo@G-Laj, ACFL). The capsules were thoroughly characterized using field emission scanning electron microscopy and cell microscopic imaging to verify their morphology and their ability to encapsulate probiotics. The results indicated that ACFL capsules maintained their integrity during a 2-h incubation in DPBS (Dulbecco’s Phosphate-Buffered Saline) without releasing the probiotics, underscoring their robust encapsulation capacity. Moreover, ACFL could sustain the activity of Laj in SGF (simulated gastric fluid) for a long time by locally neutralizing the gastric acid through CaCO3. It’s worth noting that Laj exhibits considerable H. pylori inhibition properties by secreting lactic acid to damage H. pylori and by competing adsorption for gastric epithelial cells with H. pylori. ACFL capsules demonstrated significant H. pylori inhibition properties even after exposure to SGF, further supporting the protective effect of the encapsulation strategy on probiotic activity. Moreover, in order to achieve efficient bactericidal performance in the real system, it is necessary to design a power device to give the capsule active propulsion ability to realize targeted delivery of Laj. FeCo@G, which possesses brilliant stability in acid environment on account of the protective graphitic shell, was integrated in ACFL for efficient magnetically navigated delivery. The results show that ACFL can reach a velocity of 3 cm·s-1 under the guidance of an external magnetic field, which confirms the ability of ACFL capsule to be potent tool for target delivery of probiotics. In conclusion, ACFL capsules hold promise for effectively targeting the gastric wall and releasing active probiotics to combat H. pylori infections. The combination of acid-neutralizing properties and magnetic navigation not only maintains the viability of the probiotics but also minimizes disruption to gastric homeostasis. This innovative approach offers a new avenue for protecting and controlling the release of active agents in the challenging gastric environment, opening up possibilities for improved treatments and interventions.
-
-
[1]
(1) Miehlke, S.; Hackelsberger, A.; Meining, A.; Hatz, R.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Bayerdorffer, E. Br. J. Cancer 1998, 78 (2), 263. doi:10.1038/bjc.1998.475
-
[2]
(2) Kao, C. Y.; Sheu, B. S.; Wu, J. J. Biomed. J. 2016, 39 (1), 14. doi:10.1016/j.bj.2015.06.002
-
[3]
(3) Yazbek, P. B.; Trindade, A. B.; Chin, C. M.; Dos Santos, J. L. Dig. Dis. Sci. 2015, 60 (10), 2901. doi:10.1007/s10620-015-3712-y
-
[4]
(4) Poulsen, A. H.; Christensen, S.; McLaughlin, J. K.; Thomsen, R. W.; Sorensen, H. T.; Olsen, J. H.; Friis, S. Br. J. Cancer 2009, 100 (9), 1503. doi:10.1038/sj.bjc.6605024
-
[5]
(5) Smith, S. M.; O'Morain, C.; McNamara, D. World J. Gastroenterol. 2014, 20 (29), 9912. doi:10.3748/wjg.v20.i29.9912
-
[6]
(6) Mestre, A.; Sathiya Narayanan, R.; Rivas, D.; John, J.; Abdulqader, M. A.; Khanna, T.; Chakinala, R. C.; Gupta, S. Cureus 2022, 14 (6), e26463. doi:10.7759/cureus.26463
-
[7]
(7) Felley, C.; Michetti, P. Res. Clin. Gastroenterol. 2003, 17 (5), 785. doi:10.1016/s1521-6918(03)00070-2
-
[8]
(8) Midolo, P. D.; Lambert, J. R.; Hull, R.; Luo, F.; Grayson, M. L. J. Appl. Bacteriol. 1995, 79 (4), 475. doi:10.1111/j.13652672.1995.tb03164.x
-
[9]
(9) Kim, J. E.; Kim, M. S.; Yoon, Y. S.; Chung, M. J.; Yum, D. Y. J. Microbiol. 2014, 52 (11), 955. doi:10.1007/s12275-014-4355-y
-
[10]
(10) Lin, W. H.; Wu, C. R.; Fang, T. J.; Guo, J. T.; Huang, S. Y.; Lee, M. S.; Yang, H. L. J. Sci. Food Agric. 2011, 91 (8), 1424. doi:10.1002/jsfa.4327
-
[11]
(11) Dore, M. P.; Cuccu, M.; Pes, G. M.; Manca, A.; Graham, D. Y. Intern. Emerg. Med. 2013, 9 (6), 649. doi:10.1007/s11739-013-1013-z
-
[12]
(12) Xu, C.; Ban, Q.; Wang, W.; Hou, J.; Jiang, Z. J. Control. Release 2022, 349, 184. doi:10.1016/j.jconrel.2022.06.061
-
[13]
(13) Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D. L.; Hoorfar, M. Food Hydrocoll. 2021, 120, 106882. doi:10.1016/j.foodhyd.2021.106882
-
[14]
(14) Ghibaudo, F.; Gerbino, E.; Viviana, C. D. O.; Gómez-Zavaglia, A. J. Funct. Foods 2017, 39, 299. doi:10.1016/j.jff.2017.10.028
-
[15]
(15) Liu, H.; Xie, M.; Nie, S. Food Front. 2020, 1 (1), 45. doi:10.1002/fft2.11
-
[16]
(16) Ni, F.; Luo, X.; Zhao, Z.; Yuan, J.; Song, Y.; Liu, C.; Huang, M.; Dong, L.; Xie, H.; Cai, L.; Ren, G.; Gu, Q. Int. J. Biol. Macromol. 2023, 224, 94. doi:10.1016/j.ijbiomac.2022.10.106
-
[17]
(17) Singu, B. D.; Bhushette, P. R.; Annapure, U. S. Food Biosci. 2020, 36, 100668. doi:10.1016/j.fbio.2020.100668
-
[18]
(18) Dong, Q. Y.; Chen, M. Y.; Xin, Y.; Qin, X. Y.; Cheng, Z.; Shi, L. E.; Tang, Z. X. Int. J. Food Sci. Technol. 2013, 48 (7), 1339. doi:10.1111/ijfs.12078
-
[19]
(19) Doherty, S. B.; Gee, V. L.; Ross, R. P.; Stanton, C.; Fitzgerald, G. F.; Brodkorb, A. Food Hydrocoll. 2011, 25 (6), 1604. doi:10.1016/j.foodhyd.2010.12.012
-
[20]
-
[21]
-
[22]
(22) Zhang, W.; He, X. J. Biomech. Eng. 2009, 131 (7), 074515. doi:10.1115/1.3153326
-
[23]
(23) Xu, C.; Ma, J.; Liu, Z.; Wang, W.; Liu, X.; Qian, S.; Chen, L.; Gu, L.; Sun, C.; Hou, J.; Jiang, Z. Food Chem. 2023, 402, 134253. doi:10.1016/j.foodchem.2022.134253
-
[24]
(24) Yao, M.; Xie, J.; Du, H.; McClements, D. J.; Xiao, H.; Li, L. Compr. Rev. Food Sci. Food Safety 2020, 19 (2), 857. doi:10.1111/1541-4337.12532
-
[25]
(25) Etchepare, M. d. A.; Raddatz, G. C.; Cichoski, A. J.; Flores, É. M. M.; Barin, J. S.; Queiroz Zepka, L.; Jacob-Lopes, E.; Grosso, C. R. F.; de Menezes, C. R. J. Funct. Foods 2016, 21, 321. doi:10.1016/j.jff.2015.12.025
-
[26]
(26) Peñalva, R.; Martínez-López, A. L.; Gamazo, C.; Gonzalez-Navarro, C. J.; González-Ferrero, C.; Virto-Resano, R.; Brotons-Canto, A.; Vitas, A. I.; Collantes, M.; Peñuelas, I.; et al. Food Hydrocoll. 2023, 136, 108213. doi:10.1016/j.foodhyd.2022.108213
-
[27]
(27) Hlaing, S. P.; Kim, J.; Lee, J.; Kwak, D.; Kim, H.; Yoo, J. W. Pharmaceutics 2020, 12 (7), 662. doi:10.3390/pharmaceutics12070662
-
[28]
(28) Fu, Q.; Zhang, X.; Zhang, S.; Fan, C.; Cai, Z.; Wang, L. Appl. Bionics Biomech. 2022, 2022, 2233417. doi:10.1155/2022/2233417
-
[29]
-
[30]
(30) Kadiri, V. M.; Bussi, C.; Holle, A. W.; Son, K.; Kwon, H.; Schutz, G.; Gutierrez, M. G.; Fischer, P. Adv. Mater. 2020, 32 (25), e2001114. doi:10.1002/adma.202001114
-
[31]
(31) Xing, J.; Yin, T.; Li, S.; Xu, T.; Ma, A.; Chen, Z.; Luo, Y.; Lai, Z.; Lv, Y.; Pan, H.; et al. Adv. Funct. Mater. 2020, 31 (11), 2008262. doi:10.1002/adfm.202008262
-
[32]
(32) Chatzipirpiridis, G.; Ergeneman, O.; Pokki, J.; Ullrich, F.; Fusco, S.; Ortega, J. A.; Sivaraman, K. M.; Nelson, B. J.; Pane, S. Adv. Healthc. Mater. 2015, 4 (2), 209. doi:10.1002/adhm.201400256
-
[33]
(33) Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Sci. Robot 2019, 4, eaav8006. doi:10.1126/scirobotics.aav8006
-
[34]
(34) Zhang, L.; Zhang, L.; Deng, H.; Li, H.; Tang, W.; Guan, L.; Qiu, Y.; Donovan, M. J.; Chen, Z.; Tan, W. Nat. Commun. 2021, 12, 2002. doi:10.1038/s41467-021-22286-x
-
[35]
(35) Cai, X.; Xu, Y.; Zhao, L.; Xu, J.; Li, S.; Wen, C.; Xia, X.; Dong, Q.; Hu, X.; Wang, X.; et al. Nano Today 2021, 36, 101032. doi:10.1016/j.nantod.2020.101032
-
[36]
(36) Li, Y.; Hu, X.; Ding, D.; Zou, Y.; Xu, Y.; Wang, X.; Zhang, Y.; Chen, L.; Chen, Z.; Tan, W. Nat. Commun. 2017, 8, 15653. doi:10.1038/ncomms15653
-
[37]
(37) Cai, X.; Li, Z.; Zhou, W. J.; Deng, H.; Cao, X.; Xu, J.; Yin, Z.; Wang, S.; Xia, X.; Ma, C.; et al. Chem. Commun. 2023, 59, 5455. doi:10.1039/D3CC00933E
-
[1]
-
-
[1]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[2]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[3]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[4]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[5]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[6]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[7]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[8]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[9]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[10]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[11]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[12]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[13]
Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022
-
[14]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[15]
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
-
[16]
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
-
[17]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[20]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(83)
- HTML views(4)