Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality
- Corresponding author: Hailin Peng, hlpeng@pku.edu.cn †These authors contributed equally to this work.
Citation: Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230604. doi: 10.3866/PKU.WHXB202306043
Kang, K.; Lee, K. H.; Han, Y.; Gao, H.; Xie, S.; Muller, D. A.; Park, J. Nature 2017, 550 (7675), 229. doi: 10.1038/nature23905
doi: 10.1038/nature23905
Liu, Y.; Duan, X.; Shin, H. -J.; Park, S.; Huang, Y.; Duan, X. Nature 2021, 591 (7848), 43. doi: 10.1038/s41586-021-03339-z
doi: 10.1038/s41586-021-03339-z
Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. P.; Koppens, F. H. L. Nature 2019, 573 (7775), 507. doi: 10.1038/s41586-019-1573-9
doi: 10.1038/s41586-019-1573-9
Chhowalla, M.; Jena, D.; Zhang, H. Nat. Rev. Mater. 2016, 1 (11), 16052. doi: 10.1038/natrevmats2016.52
doi: 10.1038/natrevmats2016.52
Wang, S.; Liu, X.; Xu, M.; Liu, L.; Yang, D.; Zhou, P. Nat. Mater. 2022, 21, 1225. doi: 10.1038/s41928-022-00824-9
doi: 10.1038/s41928-022-00824-9
Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. Nat. Nanotech. 2017, 12, 530. doi: 10.1038/NNANO.2017.43
doi: 10.1038/NNANO.2017.43
Tan, C.; Yu, M.; Tang, J.; Gao, X.; Yin, Y.; Zhang, Y.; Wang, J.; Gao, X.; Zhang, C.; Zhou, X.; et al. Nature 2023, 616 (7955), 66. doi: 10.1038/s41586-023-05797-z
doi: 10.1038/s41586-023-05797-z
Zhang, Y.; Yu, J.; Zhu, R.; Wang, M.; Tan, C.; Tu, T.; Zhou, X.; Zhang, C.; Yu, M.; Gao, X.; et al. Nat. Electron. 2022, 5 (10), 643. doi: 10.1038/s41928-022-00824-9
doi: 10.1038/s41928-022-00824-9
Li, P.; Han, A.; Zhang, C.; He, X.; Zhang, J.; Zheng, D.; Cheng, L.; Li, L. -J.; Miao, G. -X.; Zhang, X. -X. ACS Nano 2020, 14 (9), 11319. doi: 10.1021/acsnano.0c03346
doi: 10.1021/acsnano.0c03346
Ying, J.; He, J.; Yang, G.; Liu, M.; Lyu, Z.; Zhang, X.; Liu, H.; Zhao, K.; Jiang, R.; Ji, Z.; et al. Nano Lett. 2020, 20 (4), 2569. doi: 10.1021/acs.nanolett.0c00025
doi: 10.1021/acs.nanolett.0c00025
Li, T.; Tu, T.; Sun, Y.; Fu, H.; Yu, J.; Xing, L.; Wang, Z.; Wang, H.; Jia, R.; Wu, J.; et al. Nat. Electron. 2020, 3, 473. doi: 10.1038/s41928-020-0444-6
doi: 10.1038/s41928-020-0444-6
Zhang, C.; Tu, T.; Wang, J.; Zhu, Y.; Tan, C.; Chen, L.; Wu, M.; Zhu, R.; Liu, Y.; Fu, H.; et al. Nat. Mater. 2023. doi: 10.1038/s41563-023-01502-7
doi: 10.1038/s41563-023-01502-7
Yang, F.; Wu, J.; Suwardi, A.; Zhao, Y.; Liang, B.; Jiang, J.; Xu, J.; Chi, D.; Hippalgaonkar, K.; Lu, J.; Ni, Z. Adv. Mater. 2020, e2004786. doi: 10.1002/adma.202004786
doi: 10.1002/adma.202004786
Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Nat. Commun. 2018, 9 (1), 3311. doi: 10.1038/s41467-018-05874-2
doi: 10.1038/s41467-018-05874-2
Chen, Y.; Ma, W.; Tan, C.; Luo, M.; Zhou, W.; Yao, N.; Wang, H.; Zhang, L.; Xu, T.; Tong, T.; et al. Adv. Funct. Mater. 2021, 31 (14). doi: 10.1002/adfm.202009554
doi: 10.1002/adfm.202009554
Tian, X.; Luo, H.; Wei, R.; Zhu, C.; Guo, Q.; Yang, D.; Wang, F.; Li, J.; Qiu, J. Adv. Mater. 2018, 30 (31), 1801021. doi: 10.1002/adma.201801021
doi: 10.1002/adma.201801021
Xu, S.; Fu, H.; Tian, Y.; Deng, T.; Cai, J.; Wu, J.; Tu, T.; Li, T.; Tan, C.; Liang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 17938. doi: 10.1002/anie.202006745
doi: 10.1002/anie.202006745
Zhang, C.; Wu, J.; Sun, Y.; Tan, C.; Li, T.; Tu, T.; Zhang, Y.; Liang, Y.; Zhou, X.; Gao, P.; et al. J. Am. Chem. Soc. 2020, 142 (6), 2726. doi: 10.1021/jacs.9b11668
doi: 10.1021/jacs.9b11668
Xia, Y.; Wang, J.; Chen, R.; Wang, H.; Xu, H.; Jiang, C.; Li, W.; Xiao, X. Adv. Electron. Mater. 2022, 8 (9), 2200126. doi: 10.1002/aelm.202200126
doi: 10.1002/aelm.202200126
Liu, B.; Zhao, Y.; Verma, D.; Wang, L. A.; Liang, H.; Zhu, H.; Li, L. J.; Hou, T. H.; Lai, C. S. ACS Appl. Mater. Interfaces 2021, 13, 15391. doi: 10.1021/acsami.1c00177
doi: 10.1021/acsami.1c00177
Zhang, Z.; Li, T.; Wu, Y.; Jia, Y.; Tan, C.; Xu, X.; Wang, G.; Lv, J.; Zhang, W.; He, Y.; et al. Adv. Mater. 2019, 31 (3), 1805769. doi: 10.1002/adma.201805769
doi: 10.1002/adma.201805769
Khan, U.; Luo, Y.; Tang, L.; Teng, C.; Liu, J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2019, 29 (14), 1807979. doi: 10.1002/adfm.201807979
doi: 10.1002/adfm.201807979
Tan, C.; Tang, M.; Wu, J.; Liu, Y.; Li, T.; Liang, Y.; Deng, B.; Tan, Z.; Tu, T.; Zhang, Y.; et al. Nano Lett. 2019, 19 (3), 2148. doi: 10.1021/acs.nanolett.9b00381
doi: 10.1021/acs.nanolett.9b00381
Liang, Y.; Chen, Y.; Sun, Y.; Xu, S.; Wu, J.; Tan, C.; Xu, X.; Yuan, H.; Yang, L.; Chen, Y.; et al. Adv. Mater. 2019, 31 (39), 1901964. doi: 10.1002/adma.201901964
doi: 10.1002/adma.201901964
Song, Y.; Li, Z.; Li, H.; Tang, S.; Mu, G.; Xu, L.; Peng, W.; Shen, D.; Chen, Y.; Xie, X.; et al. Nanotechnology 2020, 31 (16), 165704. doi: 10.1088/1361-6528/ab6686
doi: 10.1088/1361-6528/ab6686
Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Cicek, M. M.; Lee, I.; Bae, B. S.; Durgun, E.; et al. ACS Nano 2021, 15 (5), 8715. doi: 10.1021/acsnano.1c00811
doi: 10.1021/acsnano.1c00811
Dang, L. Y.; Liu, M.; Wang, G. G.; Zhao, D. Q.; Han, J. C.; Zhu, J. Q.; Liu, Z. Adv. Funct. Mater. 2022, 32 (31), 2201020. doi: 10.1002/adfm.202201020
doi: 10.1002/adfm.202201020
Li, M. Q.; Dang, L. Y.; Wang, G. G.; Li, F.; Han, M.; Wu, Z. P.; Li, G. Z.; Liu, Z.; Han, J. C. Adv. Mater. Technol. 2020, 5 (7), 2000180. doi: 10.1002/admt.202000180
doi: 10.1002/admt.202000180
Wei, Q.; Li, R.; Lin, C.; Han, A.; Nie, A.; Li, Y.; Li, L. J.; Cheng, Y.; Huang, W. ACS Nano 2019, 13 (11), 13439. doi: 10.1021/acsnano.9b07000
doi: 10.1021/acsnano.9b07000
Chen, C.; Wang, M.; Wu, J.; Fu, H.; Yang, H.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X.; et al. Sci. Adv. 2018, 4 (9), eaat8355. doi: 10.1126/sciadv.aat8355
doi: 10.1126/sciadv.aat8355
Eremeev, S. V.; Koroteev, Y. M.; Chulkov, E. V. Phys. Rev. B 2019, 100 (11). doi: 10.1103/PhysRevB.100.115417
doi: 10.1103/PhysRevB.100.115417
Meng, M.; Huang, S.; Tan, C.; Wu, J.; Jing, Y.; Peng, H.; Xu, H. Nanoscale 2018, 10, 2704. doi: 10.1039/C7NR08874D
doi: 10.1039/C7NR08874D
Zhou, X.; Liang, Y.; Fu, H.; Zhu, R.; Wang, J.; Cong, X.; Tan, C.; Zhang, C.; Zhang, Y.; Wang, Y.; et al. Adv. Mater. 2022, 34 (42), e2202754. doi: 10.1002/adma.202202754
doi: 10.1002/adma.202202754
Li, X.; Yu, Z.; Xiong, X.; Li, T.; Gao, T.; Wang, R.; Huang, R.; Wu, Y. Sci. Adv. 2019, 5 (6), eaau3194. doi: doi: 10.1126/sciadv.aau3194
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano.2010.279
doi: 10.1038/nnano.2010.279
Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2012, 12 (11), 5576. doi: 10.1021/nl302584w
doi: 10.1021/nl302584w
Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Phys. Rev. B 2012, 85 (3), 033305. doi: 10.1103/PhysRevB.85.033305
doi: 10.1103/PhysRevB.85.033305
Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Adv. Mater. 2016, 28 (12), 2399. doi: 10.1002/adma.201504572
doi: 10.1002/adma.201504572
Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. Sci. Rep. 2015, 5, 10699. doi: 10.1038/srep10699
doi: 10.1038/srep10699
Yang, C. -x.; Zhao, X.; Wei, S. -y. Solid State Commun. 2016, 245, 70. doi: 10.1016/j.ssc.2016.07.003
doi: 10.1016/j.ssc.2016.07.003
Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodriguez-Canto, P. J.; Segura, A.; Cros, A.; Tobias, G.; Canadell, E.; et al. Nano Lett. 2016, 16 (5), 3221. doi: 10.1021/acs.nanolett.6b00689
doi: 10.1021/acs.nanolett.6b00689
Gonzalez, J. M.; Oleynik, I. I. Phys. Rev. B 2016, 94 (12), 125443. doi: 10.1103/PhysRevB.94.125443
doi: 10.1103/PhysRevB.94.125443
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438 (7065), 197. doi: 10.1038/nature04233
doi: 10.1038/nature04233
Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Nano Lett. 2012, 12 (1), 113. doi: 10.1021/nl203065e
doi: 10.1021/nl203065e
Zhao, Q.; Guo, Y.; Si, K.; Ren, Z.; Bai, J.; Xu, X. Phys. Status. Solidi. (b) 2017, 254 (9), 1700033. doi: 10.1002/pssb.201700033
doi: 10.1002/pssb.201700033
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices. John Wiley & Sons: New Jersey, USA; 2006; pp. 5–75.
Mu, X.; Wang, J.; Sun, M. Mat. Today Phys 2019, 8, 92. doi: 10.1016/j.mtphys.2019.02.003
doi: 10.1016/j.mtphys.2019.02.003
Cheng, L.; Liu, Y. J. Am. Chem. Soc. 2018, 140 (51), 17895. doi: 10.1021/jacs.8b07871
doi: 10.1021/jacs.8b07871
Caruso, F.; Amsalem, P.; Ma, J.; Aljarb, A.; Schultz, T.; Zacharias, M.; Tung, V.; Koch, N.; Draxl, C. Phys. Rev. B 2021, 103 (20), 205152. doi: 10.1103/PhysRevB.103.205152
doi: 10.1103/PhysRevB.103.205152
Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. -H.; Sung, H. -J.; Kan, M.; Kang, H.; Hwang, J. -Y.; Kim, S. W.; Yang, H.; et al. Nat. Phys. 2015, 11 (6), 482. doi: 10.1038/nphys3314
doi: 10.1038/nphys3314
Tan, C.; Jiang, J.; Wang, J.; Yu, M.; Tu, T.; Gao, X.; Tang, J.; Zhang, C.; Zhang, Y.; Zhou, X.; et al. Nano Lett. 2022, 22 (9), 3770. doi: 10.1021/acs.nanolett.2c00820
doi: 10.1021/acs.nanolett.2c00820
Chen, X.; Chen, C.; Levi, A.; Houben, L.; Deng, B.; Yuan, S.; Ma, C.; Watanabe, K.; Taniguchi, T.; Naveh, D.; et al. ACS Nano 2018, 12 (5), 5003. doi: 10.1021/acsnano.8b02295
doi: 10.1021/acsnano.8b02295
Dorgan, V. E.; Bae, M. -H.; Pop, E. Appl. Phys. Lett. 2010, 97 (8), 082112. doi: 10.1063/1.3483130
doi: 10.1063/1.3483130
Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. Nano Lett. 2018, 18 (7), 4516. doi: 10.1021/acs.nanolett.8b01692
doi: 10.1021/acs.nanolett.8b01692
Jin, Z.; Li, X.; Mullen, J. T.; Kim, K. W. Phys. Rev. B 2014, 90 (4), 045422. doi: 10.1103/PhysRevB.90.045422
doi: 10.1103/PhysRevB.90.045422
Rengel, R.; Iglesias, J. M.; Hamham, E. M.; Martín, M. J. Semicond. Sci. Tech. 2018, 33 (6), 065011. doi: 10.1088/1361-6641/aac0a2
doi: 10.1088/1361-6641/aac0a2
Xu, Y.; Shi, X.; Zhang, Y.; Zhang, H.; Zhang, Q.; Huang, Z.; Xu, X.; Guo, J.; Zhang, H.; Sun, L.; et al. Nat. Commun. 2020, 11 (1), 1330. doi: 10.1038/s41467-020-14902-z
doi: 10.1038/s41467-020-14902-z
Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 9 (5), 372. doi: 10.1038/nnano.2014.35
doi: 10.1038/nnano.2014.35
Chang, W. H.; Irisawa, T.; Ishii, H.; Hattori, H.; Uchida, N.; Maeda, T. In HEtero-layer-lift-off (HELLO) technology for enhanced hole mobility in UTB GeOI pMOSFETs, 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 16–19 April 2018; 2018; pp. 1–2.
Zhu, W.; Perebeinos, V.; Freitag, M.; Avouris, P. Phys. Rev. B 2009, 80 (23), 235402. doi: 10.1103/PhysRevB.80.235402
doi: 10.1103/PhysRevB.80.235402
Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Sci. Rep. 2016, 6, 22277. doi: 10.1038/srep22277
doi: 10.1038/srep22277
Mleczko, M. J.; Zhang, C.; Lee, H. R.; Kuo, H. -H.; Magyari-Köpe, B.; Moore, R. G.; Shen, Z. -X.; Fisher, I. R.; Nishi, Y.; Pop, E. Sci. Adv. 2017, 3 (8), e1700481. doi: 10.1126/sciadv.1700481
doi: 10.1126/sciadv.1700481
English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Nano Lett. 2016, 16 (6), 3824. doi: 10.1021/acs.nanolett.6b01309
doi: 10.1021/acs.nanolett.6b01309
Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 5143. doi: 10.1038/ncomms6143
doi: 10.1038/ncomms6143
Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; et al. Nat. Nanotechnol. 2021, 16 (11), 1201. doi: 10.1038/s41565-021-00963-8
doi: 10.1038/s41565-021-00963-8
Liu, L.; Li, T.; Ma, L.; Li, W.; Gao, S.; Sun, W.; Dong, R.; Zou, X.; Fan, D.; Shao, L.; et al. Nature 2022, 605 (7908), 69. doi: 10.1038/s41586-022-04523-5
doi: 10.1038/s41586-022-04523-5
Larentis, S.; Fallahazad, B.; Tutuc, E. Appl. Phys. Lett. 2012, 101 (22), 223104. doi: 10.1063/1.4768218
doi: 10.1063/1.4768218
Ji, H.; Joo, M. K.; Yi, H.; Choi, H.; Gul, H. Z.; Ghimire, M. K.; Lim, S. C. ACS Appl. Mater. Interfaces 2017, 9 (34), 29185. doi: 10.1021/acsami.7b05865
doi: 10.1021/acsami.7b05865
Zhao, Y.; Qiao, J.; Yu, Z.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X.; Ji, W.; et al. Adv. Mater. 2017, 29 (5), 1604230. doi: 10.1002/adma.201604230
doi: 10.1002/adma.201604230
Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. In Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI n- and p-MOSFETs with SOI Thickness Less Than 5 nm. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 Dec. 2002; 2002; pp. 47–50.
Irisawa, T.; Numata, T.; Tezuka, T.; Sugiyama, N.; Takagi, S. I. In Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain, International Electron Devices Meeting, San Francisco, CA, USA, 11–13 Dec. 2006; 2006; pp. 1–4.
Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. Nanoscale 2013, 5 (20), 9666. doi: 10.1039/c3nr01899g
doi: 10.1039/c3nr01899g
Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. Adv. Funct. Mater. 2017, 27 (47), 1703448. doi: 10.1002/adfm.201703448
doi: 10.1002/adfm.201703448
Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G.; et al. Nano Res. 2017, 11 (2), 722. doi: 10.1007/s12274-017-1681-5
doi: 10.1007/s12274-017-1681-5
Pradhan, N. R.; Rhodes, D.; Memaran, S.; Poumirol, J. M.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A. L.; Terrones, M.; et al. Sci. Rep. 2015, 5, 8979. doi: 10.1038/srep08979
doi: 10.1038/srep08979
Ji, H. G.; Solis-Fernandez, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Adv. Mater. 2019, 31 (42), 1903613. doi: 10.1002/adma.201903613
doi: 10.1002/adma.201903613
Khan, U.; Tang, L.; Ding, B.; Yuting, L.; Feng, S.; Chen, W.; Khan, M. J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2021, 31 (31), 2101170. doi: 10.1002/adfm.202101170
doi: 10.1002/adfm.202101170
Wei, Y.; Chen, C.; Tan, C.; He, L.; Ren, Z.; Zhang, C.; Peng, S.; Han, J.; Zhou, H.; Wang, J. Adv. Opt. Mater. 2022, 10 (23), 2201396. doi: 10.1002/adom.202201396
doi: 10.1002/adom.202201396
Wu, J.; Qiu, C.; Fu, H.; Chen, S.; Zhang, C.; Dou, Z.; Tan, C.; Tu, T.; Li, T.; Zhang, Y.; et al. Nano Lett 2019, 19 (1), 197. doi: 10.1021/acs.nanolett.8b03696
doi: 10.1021/acs.nanolett.8b03696
Wu, J.; Tan, C.; Tan, Z.; Liu, Y.; Yin, J.; Dang, W.; Wang, M.; Peng, H. Nano Lett. 2017, 17, 3021. doi: 10.1021/acs.nanolett.7b00335
doi: 10.1021/acs.nanolett.7b00335
Yang, X.; Zhang, Q.; Song, Y.; Fan, Y.; He, Y.; Zhu, Z.; Bai, Z.; Luo, Q.; Wang, G.; Peng, G.; et al. ACS Appl. Mater. Interfaces 2021, 13 (41), 49153. doi: 10.1021/acsami.1c13491
doi: 10.1021/acsami.1c13491
Qin, B.; Saeed, M. Z.; Li, Q.; Zhu, M.; Feng, Y.; Zhou, Z.; Fang, J.; Hossain, M.; Zhang, Z.; Zhou, Y.; et al. Nat. Commun. 2023, 14 (1), 304. doi: 10.1038/s41467-023-35983-6
doi: 10.1038/s41467-023-35983-6
Wu, Z.; Liu, G.; Wang, Y.; Yang, X.; Wei, T.; Wang, Q.; Liang, J.; Xu, N.; Li, Z.; Zhu, B.; et al. Adv. Funct. Mater. 2019, 29 (50), 1906639. doi: 10.1002/adfm.201906639
doi: 10.1002/adfm.201906639
Li, J.; Wang, Z.; Chu, J.; Cheng, Z.; He, P.; Wang, J.; Yin, L.; Cheng, R.; Li, N.; Wen, Y.; et al. Appl. Phys. Lett. 2019, 114 (15), 151104. doi: 10.1063/1.5094192
doi: 10.1063/1.5094192
Ying, J.; Yang, G.; Lyu, Z.; Liu, G.; Ji, Z.; Fan, J.; Yang, C.; Jing, X.; Yang, H.; Lu, L.; et al. Phys. Rev. B 2019, 100 (23), 235307. doi: 10.1103/PhysRevB.100.235307
doi: 10.1103/PhysRevB.100.235307
Tan, C.; Yu, M.; Xu, S.; Wu, J.; Chen, S.; Zhao, Y.; Liu, C.; Zhang, Y.; Tu, T.; Li, T.; et al. Acta Phys. -Chim. Sin. 2020, 36 (1), 1908038.
doi: 10.3866/PKU.WHXB201908038
Li, T.; Peng, H. Acc. Mater. Res. 2021, 2 (9), 842. doi: 10.1021/accountsmr.1c00130
doi: 10.1021/accountsmr.1c00130
Wu, J.; Liu, Y.; Tan, Z.; Tan, C.; Yin, J.; Li, T.; Tu, T.; Peng, H. Adv. Mater. 2017, 29, 1704060. doi: 10.1002/adma.201704060
doi: 10.1002/adma.201704060
Fu, H.; Wu, J.; Peng, H.; Yan, B. Phys. Rev. B 2018, 97 (24), 241203. doi: 10.1103/PhysRevB.97.241203
doi: 10.1103/PhysRevB.97.241203
Wei, Q.; Lin, C.; Li, Y.; Zhang, X.; Zhang, Q.; Shen, Q.; Cheng, Y.; Huang, W. J. Appl. Phys. 2018, 124 (5), 055701. doi: 10.1063/1.5040690
doi: 10.1063/1.5040690
Hong, C.; Tao, Y.; Nie, A.; Zhang, M.; Wang, N.; Li, R.; Huang, J.; Huang, Y.; Ren, X.; Cheng, Y.; et al. ACS Nano 2020, 14, 16803. doi: 10.1021/acsnano.0c05300
doi: 10.1021/acsnano.0c05300
Wang, J.; Wu, J.; Wang, T.; Xu, Z.; Wu, J.; Hu, W.; Ren, Z.; Liu, S.; Behnia, K.; Lin, X. Nat. Commun. 2020, 11 (1), 3846. doi: 10.1038/s41467-020-17692-6
doi: 10.1038/s41467-020-17692-6
Khan, U.; Nairan, A.; Khan, K.; Li, S.; Liu, B.; Gao, J. Small 2022, 19 (10), 2206648. doi: 10.1002/smll.202206648
doi: 10.1002/smll.202206648
Tong, T.; Chen, Y.; Qin, S.; Li, W.; Zhang, J.; Zhu, C.; Zhang, C.; Yuan, X.; Chen, X.; Nie, Z.; et al. Adv. Funct. Mater. 2019, 29 (50), 1905806. doi: 10.1002/adfm.201905806
doi: 10.1002/adfm.201905806
Zhao, K.; Liu, H.; Tan, C.; Xiao, J.; Shen, J.; Liu, G.; Peng, H.; Lu, L.; Qu, F. Appl. Phys. Lett. 2022, 121 (21), 212104. doi: 10.1063/5.0126739
doi: 10.1063/5.0126739
Zou, X.; Sun, Y.; Wang, C. Small Methods 2022, 6 (8), 2200347. doi: 10.1002/smtd.202200347
doi: 10.1002/smtd.202200347
Sagar, R. U. R.; Khan, U.; Galluzzi, M.; Aslam, S.; Nairan, A.; Anwar, T.; Ahmad, W.; Zhang, M.; Liang, T. ACS Appl. Electron. Mater. 2020, 2 (7), 2123. doi: 10.1021/acsaelm.0c00344
doi: 10.1021/acsaelm.0c00344
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038