Citation: Gaopeng Liu, Lina Li, Bin Wang, Ningjie Shan, Jintao Dong, Mengxia Ji, Wenshuai Zhu, Paul K. Chu, Jiexiang Xia, Huaming Li. Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230604. doi: 10.3866/PKU.WHXB202306041
-
The continuous increase in the consumption of coal, oil, and natural gas has not only led to the depletion of unsustainable energy sources, but has also caused excessive CO2 emissions, thus resulting in serious energy crises and climate issues. In such a scenario, it is imperative to explore clean and sustainable energy conversion technologies to address the escalating energy demands and environmental crises. Photocatalytic CO2 conversion, inspired by natural photosynthesis, utilizes solar energy to convert CO2 and water into valuable chemicals. After decades of development, artificial photosynthesis has emerged as a green, cost-effective, and sustainable approach to achieving carbon neutrality. However, the challenges of low carrier separation efficiency and insufficient active sites in photocatalysts remain significant hurdles in achieving high-performance CO2 photoreduction. To address this challenge, the integration of metal nanoparticles with semiconductors to create an Ohmic junction can enhance electron-hole migration by the assist of interfacial electric field (IEF). In this study, an Ohmic junction photocatalyst is constructed by in situ formation of Bi nanoparticles on the surface of BiOCl nanosheets through a solvothermal process. The composition and morphology of the photocatalysts were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was employed to assess the light absorption performance of the photocatalyst. Transient photocurrent response, electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR) were utilized to evaluate the efficiency of electron-hole transfer. The distinct work function difference between Bi nanoparticles and BiOCl nanosheets leads to favorable charge transfer characteristics within the formed Ohmic junction, significantly improving the utilization efficiency of photogenerated carriers. Besides, the Bi nanoparticles serve as co-catalysts, enhancing the activation of inert CO2. As a result, the optimized Bi/BiOCl composite (Bi/BiOCl-2) exhibits enhanced generation rates of CO (34.31 µmol·g-1) and CH4 (1.57 µmol g-1) during 4-h of irradiation, which is 2.55 and 4.76 times compared to pristine BiOCl nanosheets, respectively. Isotope tracer experiments suggest that the obtained carbon-based products are generated through CO2 photoreduction in the presence of water molecule under irradiation. Moreover, in situ Fourier-transform infrared spectroscopy (in situ FTIR) results indicate the formation of *CHO, *CH3O, b-CO32-, m-CO32-, HCO-3, HCOOH, *COOH, and HCOO- species during the CO2 reduction process and a possible mechanism for CO2 photoreduction into CO and CH4 is proposed based on these findings. After 25-h of CO2 photoreduction reaction, the yields of CO and CH4 continue to increase. Furthermore, the stability of the prepared material is confirmed by XRD pattern, XPS analysis, and TEM image. These outcomes underscore an effective strategy for constructing advanced photocatalysts tailored for high-performance solar-driven CO2 reduction.
-
-
[1]
(1) Liang, J. X.; Yu, H.; Shi, J. J.; Li, B.; Wu, L. X.; Wang, M. Adv. Mater. 2023, 35, 2209814. doi:10.1002/adma.202209814
-
[2]
(2) Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y.-X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater. 2022, 32, 2202885. doi:10.1002/adfm.202202885
-
[3]
-
[4]
(4) Yan, P. C.; Ji, F. W.; Zhang, W.; Mo, Z.; Qian, J. C.; Zhu, L. H.; Xu, L. J. Colloid Interface Sci. 2023, 634, 1005. doi:10.1016/j.jcis.2022.12.063
-
[5]
-
[6]
(6) Yang, J. M.; Jing, L. Q.; Zhu, X. W.; Zhang, W.; Deng J. J.; She, Y. B.; Nie, K. Q.; Wei, Y. C.; Li, H. M.; Xu, H. Appl. Catal. B 2023, 320, 122005. doi:10.1016/j.apcatb.2022.122005
-
[7]
(7) Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc. 2023, 145, 422. doi:10.1021/jacs.2c10351
-
[8]
(8) Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng. 2022, 3, 157. doi:10.1016/j.gce.2021.11.007
-
[9]
(9) Li, J.; Yu, X. M.; Xue, W. J.; Nie, L.; Huang, H. L.; Zhong, C. L. AIChE J. 2023, 69, e17906. doi:10.1002/aic.17906
-
[10]
(10) Li, S. G.; Chen, F.; Chu, S. Q.; Zhang, Z. Y.; Huang, J. D.; Wang, S. Y.; Feng, Y. B.; Wang, C.; Huang, H. W. Small 2023, 19, 2203559. doi:10.1002/smll.202203559
-
[11]
(11) Dong, Y.-L.; Liu, H.-R.; Wang, S.-M.; Guan, G.-W.; Yang, Q.-Y. ACS Catal. 2023, 13, 2547. doi:10.1021/acscatal.2c04588
-
[12]
(12) Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D.-L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. ACS Catal. 2023, 13, 2502. doi:10.1021/acscatal.2c05577
-
[13]
(13) Wei, J. J.; Dong, H. L.; Gao, Y. X.; Su, X.; Tan, H. W.; Li, J. J.; Zhao, Q.; Guan, X. W.; Lu, Z. L.; Ouyang, J.; et al. J. Mater. Chem. A 2023, 11, 4057. doi:10.1039/d2ta08812f
-
[14]
(14) Cheng, S. W.; Sun, Z. H.; Lim, K. H.; Zhang, T. X.; Hondo, E.; Du, T.; Liu, L. Y.; Judd, M.; Cox, N.; Yin, Z. Y.; et al. ACS Appl. Nano Mater. 2023, 6, 3608. doi:10.1021/acsanm.2c05364
-
[15]
(15) Kong, B.; Zeng, T. X.; Wang, W. T. Phys. Chem. Chem. Phys. 2021, 23, 19841. doi:10.1039/d1cp02794h
-
[16]
(16) Chen, C. Y.; Jiang, T.; Hou, J. H.; Zhang, T. T.; Zhang, G. S.; Zhang, Y. C.; Wang, X. Z. J. Mater. Sci. Technol. 2022, 114, 240. doi:10.1016/j.jmst.2021.12.006
-
[17]
(17) Song, Y.; Ye, C. C.; Yu, X.; Tang, J. Y.; Zhao, Y. X.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi:10.1016/j.apsusc.2022.152463
-
[18]
(18) Wang, S.-S.; Liang, X.; Lv, Y.-K.; Li, Y.-Y.; Zhou, R.-H.; Yao, H.-C.; Li, Z.-J. ACS Appl. Energy Mater. 2022, 5, 1149. doi:10.1021/acsaem.1c03531
-
[19]
(19) Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi:10.1016/j.apcatb.2018.11.020
-
[20]
(20) Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Nano Res. 2015, 8, 821. doi:10.1007/s12274-014-0564-2
-
[21]
(21) Gong, S. W.; Rao, F.; Zhang, W. B.; Hassan, Q.-U.; Liu, Z. Q.; Gao, J. Z.; Lu, J. B.; Hojamberdiev, M.; Zhu, G. Q. Chin. Chem. Lett. 2022, 33, 4385. doi:10.1016/j.cclet.2021.12.039
-
[22]
(22) Yao, D. F.; Liang, K. J.; Chen, G. L.; Qu, Y. D.; Liu, J. Y.; Chilivery, R.; Li, S.; Ji, M. W.; Li, Z.; Zhong, Z. Y.; et al. J. Catal. 2023, 422, 56. doi:10.1016/j.jcat.2023.04.004
-
[23]
(23) Li, Y.-L.; Liu, Y.; Mu, H.-Y.; Liu, R.-H.; Hao, Y.-J.; Wang, X.-J.; Hildebrandt, D.; Liu, X. Y.; Li, F.-T. Nanoscale 2021, 13, 2585. doi:10.1039/D0NR08314C
-
[24]
(24) Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi:10.1039/c8ta09661a
-
[25]
(25) Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. ChemSusChem 2020, 13, 876. doi:10.1002/cssc.201903437
-
[26]
(26) Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Adv. Sci. 2022, 9, 2105747. doi:10.1002/advs.202105747
-
[27]
(27) Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Appl. Catal. B 2018, 224, 10. doi:10.1016/j.apcatb.2017.10.043
-
[28]
(28) Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Chem. Eng. J. 2022, 429, 132476. doi:10.1016/j.cej.2021.132476
-
[29]
(29) Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Chem. Commun. 2019, 55, 5728. doi:10.1039/c9cc01732a
-
[30]
(30) Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Motaghedifard, M. H.; Hosseinpour-Mashkani, S. M. New J. Chem. 2015, 39, 4676. doi:10.1039/c5nj00532a
-
[31]
(31) Li, X. B.; Hu Y.; Dong, F.; Huang, J. T.; Han, L.; Deng, F.; Luo, Y. D.; Xie, Y.; He, C. Z.; Feng, Z. J.; et al. Appl. Catal. B 2023, 325, 122341. doi:10.1016/j.apcatb.2022.122341
-
[32]
(32) Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi:10.1016/j.apsusc.2022.153422
-
[33]
(33) Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Adv. Sci. 2021, 8, 2003626. doi:10.1002/advs.202003626
-
[34]
(34) Gao, F. D.; Zeng, D. W.; Huang, Q. W.; Tian, S. Q.; Xie, C. S. Phys. Chem. Chem. Phys. 2012, 14, 10572. doi:10.1039/c2cp41045a
-
[35]
(35) Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. New J. Chem. 2018, 42, 16911. doi:10.1039/c8nj03323d
-
[36]
(36) Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2023, 325, 122304. doi:10.1016/j.apcatb.2022.122304
-
[37]
(37) Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Nano Energy 2019, 57, 398. doi:10.1016/j.nanoen.2018.12.071
-
[38]
(38) Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Angew. Chem. Int. Ed. 2021, 60, 12554. doi:10.1002/anie.202102832
-
[39]
-
[40]
(40) Liu, G. P.; Wang, L.; Wang, B.; Zhu, X. W.; Yang, J. M.; Liu, P. J.; Zhu, W. S.; Chen, Z. R.; Xia, J. X. Chin. Chem. Lett. 2023, 34, 107962. doi:10.1016/j.cclet.2022.107962
-
[41]
(41) Liu, J. Y.; Zhu, S. M.; Wang, B.; Yang, R. Z.; Wang, R.; Zhu, X. W.; Song, Y. H.; Yuan, J. J.; Xu, H.; Li., H. M. Chin. Chem. Lett. 2023, 34, 107749. doi:10.1016/j.cclet.2022.107749
-
[42]
-
[43]
(43) Yan, X. W.; Wang, B.; Ji, M. X.; Jiang, Q.; Liu, G. P.; Liu, P. J.; Yin, S.; Li, H. M.; Xia, J. X. Chin. J. Struct. Chem. 2022, 41, 2208044. doi:10.14102/j.cnki.0254-5861.2022-0141
-
[44]
(44) Yang, J. H.; Hou, Y. P.; Sun, J. L.; Liang, J. X.; Yu, Z. B.; Zhu, H. X.; Wang, S. F. Sep. Purif. Technol. 2022, 299, 121701. doi:10.1016/j.seppur.2022.121701
-
[45]
(45) Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Adv. Mater. 2015, 27, 3444. doi:10.1002/adma.201501200
-
[46]
(46) Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Appl. Catal. B 2021, 297, 120413. doi:10.1016/j.apcatb.2021.120413
-
[47]
(47) Zhu, X. W.; Wang, Z. L.; Zhong, K.; Li, Q. D.; Ding, P. H.; Feng, Z. Y.; Yang, J. M.; Du, Y. S.; Song, Y. H.; Hua, Y. J.; et al. Chem. Eng. J. 2022, 429, 132204. doi:10.1016/j.cej.2021.132204
-
[48]
(48) Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Chin. J. Catal. 2022, 43, 1286. doi:10.1016/s1872-2067(21)63954-2
-
[49]
-
[50]
(50) Mo, Z.; Miao, Z. H.; Yan, P. C.; Sun, P. P.; Wu, G. Y.; Zhu, X. W.; Ding, C.; Zhu, Q.; Lei, Y. C.; Xu, H. J. Colloid Interface Sci. 2023, 645, 525. doi:10.1016/j.jcis.2023.04.123
-
[51]
-
[52]
(52) Zhang, Y.; Guo, F. Y.; Wang, K. K.; Di, J.; Min, B.; Zhu, H. Y.; Chen, H. L.; Weng, Y.-X.; Dai, J. Y.; She, Y. B.; et al. Chem. Eng. J. 2023, 465, 142663. doi:10.1016/j.cej.2023.142663
-
[53]
(53) Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. ACS Nano 2021, 15, 14453. doi:10.1021/acsnano.1c03961
-
[54]
(54) Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem. 2021, 9, 804204. doi:10.3389/fchem.2021.804204
-
[55]
(55) Yu, H. B.; Huang, J. H.; Jiang, L. B.; Leng, L. J.; Yi, K. X.; Zhang, W.; Zhang, C. Y.; Yuan, X. Z. Appl. Catal. 2021, 298, 120618. doi:10.1016/j.apcatb.2021.120618
-
[56]
(56) Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Chem. Eng. J. 2021, 409, 128178. doi:10.1016/j.cej.2020.128178
-
[57]
(57) Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci. 2022, 598, 153758. doi:10.1016/j.apsusc.2022.153758
-
[58]
(58) Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M.; et al. Nano Energy 2022, 92, 106671. doi:10.1016/j.nanoen.2021.106671
-
[59]
(59) Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Appl. Surf. Sci. 2023, 616, 156530. doi:10.1016/j.apsusc.2023.156530
-
[60]
(60) Li, X. F.; Li, K. M.; Ding, D.; Yan, J. T.; Wang, C. L.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. L. Sep. Purif. Technol. 2023, 309, 123054. doi:10.1016/j.seppur.2022.123054
-
[61]
(61) Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; et al. Nano Energy 2019, 61, 54. doi:10.1016/j.nanoen.2019.04.029
-
[62]
(62) Wang, J. Q.; Cheng, H.; Wei, D. Q.; Li, Z. H. Chin. J. Catal. 2022, 43, 2606. doi:10.1016/S1872-2067(22)64091-9
-
[63]
(63) Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209446. doi:10.1002/anie.202209446
-
[64]
(64) Ji, M. X.; Feng, J.; Zhao, J. Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. ACS Appl. Nano Mater. 2022, 5, 17226. doi:10.1021/acsanm.2c04232
-
[65]
(65) Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi:10.1038/s41560-019-0431-1
-
[66]
(66) Wang, J. Y.; Bo, T. T.; Shao, B. Y.; Zhang, Y. Z.; Jia, L. X.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021, 297, 120498. doi:10.1016/j.apcatb.2021.120498
-
[67]
(67) Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi:10.1002/anie.202017041
-
[1]
-
-
[1]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[2]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[3]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[4]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[5]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[6]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[7]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[8]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[9]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[12]
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
-
[13]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[14]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[15]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[16]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[19]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[20]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(87)
- HTML views(3)