Citation: Gaopeng Liu,  Lina Li,  Bin Wang,  Ningjie Shan,  Jintao Dong,  Mengxia Ji,  Wenshuai Zhu,  Paul K. Chu,  Jiexiang Xia,  Huaming Li. Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230604. doi: 10.3866/PKU.WHXB202306041 shu

Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction

  • Corresponding author: Wenshuai Zhu,  Jiexiang Xia,  Huaming Li, 
  • Received Date: 26 June 2023
    Revised Date: 13 August 2023
    Accepted Date: 29 August 2023

    Fund Project: The project was supported by the China Postdoctoral Science Foundation (2022M721380, 2020M680065), Jiangsu Funding Program for Excellent Postdoctoral Talent (2023ZB214), National Natural Science Foundation of China (22108106, 22108108), Hong Kong Scholar Program (XJ2021021), City University of Hong Kong Donation Research Grant (DON-RMG, 9229021), City University of Hong Kong Strategic Research Grant (SRG, 7005505), and City University of Hong Kong Donation Grant (9220061).

  • The continuous increase in the consumption of coal, oil, and natural gas has not only led to the depletion of unsustainable energy sources, but has also caused excessive CO2 emissions, thus resulting in serious energy crises and climate issues. In such a scenario, it is imperative to explore clean and sustainable energy conversion technologies to address the escalating energy demands and environmental crises. Photocatalytic CO2 conversion, inspired by natural photosynthesis, utilizes solar energy to convert CO2 and water into valuable chemicals. After decades of development, artificial photosynthesis has emerged as a green, cost-effective, and sustainable approach to achieving carbon neutrality. However, the challenges of low carrier separation efficiency and insufficient active sites in photocatalysts remain significant hurdles in achieving high-performance CO2 photoreduction. To address this challenge, the integration of metal nanoparticles with semiconductors to create an Ohmic junction can enhance electron-hole migration by the assist of interfacial electric field (IEF). In this study, an Ohmic junction photocatalyst is constructed by in situ formation of Bi nanoparticles on the surface of BiOCl nanosheets through a solvothermal process. The composition and morphology of the photocatalysts were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was employed to assess the light absorption performance of the photocatalyst. Transient photocurrent response, electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR) were utilized to evaluate the efficiency of electron-hole transfer. The distinct work function difference between Bi nanoparticles and BiOCl nanosheets leads to favorable charge transfer characteristics within the formed Ohmic junction, significantly improving the utilization efficiency of photogenerated carriers. Besides, the Bi nanoparticles serve as co-catalysts, enhancing the activation of inert CO2. As a result, the optimized Bi/BiOCl composite (Bi/BiOCl-2) exhibits enhanced generation rates of CO (34.31 µmol·g-1) and CH4 (1.57 µmol g-1) during 4-h of irradiation, which is 2.55 and 4.76 times compared to pristine BiOCl nanosheets, respectively. Isotope tracer experiments suggest that the obtained carbon-based products are generated through CO2 photoreduction in the presence of water molecule under irradiation. Moreover, in situ Fourier-transform infrared spectroscopy (in situ FTIR) results indicate the formation of *CHO, *CH3O, b-CO32-, m-CO32-, HCO-3, HCOOH, *COOH, and HCOO- species during the CO2 reduction process and a possible mechanism for CO2 photoreduction into CO and CH4 is proposed based on these findings. After 25-h of CO2 photoreduction reaction, the yields of CO and CH4 continue to increase. Furthermore, the stability of the prepared material is confirmed by XRD pattern, XPS analysis, and TEM image. These outcomes underscore an effective strategy for constructing advanced photocatalysts tailored for high-performance solar-driven CO2 reduction.
  • 加载中
    1. [1]

      (1) Liang, J. X.; Yu, H.; Shi, J. J.; Li, B.; Wu, L. X.; Wang, M. Adv. Mater. 2023, 35, 2209814. doi:10.1002/adma.202209814

    2. [2]

      (2) Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y.-X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater. 2022, 32, 2202885. doi:10.1002/adfm.202202885

    3. [3]

    4. [4]

      (4) Yan, P. C.; Ji, F. W.; Zhang, W.; Mo, Z.; Qian, J. C.; Zhu, L. H.; Xu, L. J. Colloid Interface Sci. 2023, 634, 1005. doi:10.1016/j.jcis.2022.12.063

    5. [5]

    6. [6]

      (6) Yang, J. M.; Jing, L. Q.; Zhu, X. W.; Zhang, W.; Deng J. J.; She, Y. B.; Nie, K. Q.; Wei, Y. C.; Li, H. M.; Xu, H. Appl. Catal. B 2023, 320, 122005. doi:10.1016/j.apcatb.2022.122005

    7. [7]

      (7) Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc. 2023, 145, 422. doi:10.1021/jacs.2c10351

    8. [8]

      (8) Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng. 2022, 3, 157. doi:10.1016/j.gce.2021.11.007

    9. [9]

      (9) Li, J.; Yu, X. M.; Xue, W. J.; Nie, L.; Huang, H. L.; Zhong, C. L. AIChE J. 2023, 69, e17906. doi:10.1002/aic.17906

    10. [10]

      (10) Li, S. G.; Chen, F.; Chu, S. Q.; Zhang, Z. Y.; Huang, J. D.; Wang, S. Y.; Feng, Y. B.; Wang, C.; Huang, H. W. Small 2023, 19, 2203559. doi:10.1002/smll.202203559

    11. [11]

      (11) Dong, Y.-L.; Liu, H.-R.; Wang, S.-M.; Guan, G.-W.; Yang, Q.-Y. ACS Catal. 2023, 13, 2547. doi:10.1021/acscatal.2c04588

    12. [12]

      (12) Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D.-L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. ACS Catal. 2023, 13, 2502. doi:10.1021/acscatal.2c05577

    13. [13]

      (13) Wei, J. J.; Dong, H. L.; Gao, Y. X.; Su, X.; Tan, H. W.; Li, J. J.; Zhao, Q.; Guan, X. W.; Lu, Z. L.; Ouyang, J.; et al. J. Mater. Chem. A 2023, 11, 4057. doi:10.1039/d2ta08812f

    14. [14]

      (14) Cheng, S. W.; Sun, Z. H.; Lim, K. H.; Zhang, T. X.; Hondo, E.; Du, T.; Liu, L. Y.; Judd, M.; Cox, N.; Yin, Z. Y.; et al. ACS Appl. Nano Mater. 2023, 6, 3608. doi:10.1021/acsanm.2c05364

    15. [15]

      (15) Kong, B.; Zeng, T. X.; Wang, W. T. Phys. Chem. Chem. Phys. 2021, 23, 19841. doi:10.1039/d1cp02794h

    16. [16]

      (16) Chen, C. Y.; Jiang, T.; Hou, J. H.; Zhang, T. T.; Zhang, G. S.; Zhang, Y. C.; Wang, X. Z. J. Mater. Sci. Technol. 2022, 114, 240. doi:10.1016/j.jmst.2021.12.006

    17. [17]

      (17) Song, Y.; Ye, C. C.; Yu, X.; Tang, J. Y.; Zhao, Y. X.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi:10.1016/j.apsusc.2022.152463

    18. [18]

      (18) Wang, S.-S.; Liang, X.; Lv, Y.-K.; Li, Y.-Y.; Zhou, R.-H.; Yao, H.-C.; Li, Z.-J. ACS Appl. Energy Mater. 2022, 5, 1149. doi:10.1021/acsaem.1c03531

    19. [19]

      (19) Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi:10.1016/j.apcatb.2018.11.020

    20. [20]

      (20) Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Nano Res. 2015, 8, 821. doi:10.1007/s12274-014-0564-2

    21. [21]

      (21) Gong, S. W.; Rao, F.; Zhang, W. B.; Hassan, Q.-U.; Liu, Z. Q.; Gao, J. Z.; Lu, J. B.; Hojamberdiev, M.; Zhu, G. Q. Chin. Chem. Lett. 2022, 33, 4385. doi:10.1016/j.cclet.2021.12.039

    22. [22]

      (22) Yao, D. F.; Liang, K. J.; Chen, G. L.; Qu, Y. D.; Liu, J. Y.; Chilivery, R.; Li, S.; Ji, M. W.; Li, Z.; Zhong, Z. Y.; et al. J. Catal. 2023, 422, 56. doi:10.1016/j.jcat.2023.04.004

    23. [23]

      (23) Li, Y.-L.; Liu, Y.; Mu, H.-Y.; Liu, R.-H.; Hao, Y.-J.; Wang, X.-J.; Hildebrandt, D.; Liu, X. Y.; Li, F.-T. Nanoscale 2021, 13, 2585. doi:10.1039/D0NR08314C

    24. [24]

      (24) Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi:10.1039/c8ta09661a

    25. [25]

      (25) Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. ChemSusChem 2020, 13, 876. doi:10.1002/cssc.201903437

    26. [26]

      (26) Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Adv. Sci. 2022, 9, 2105747. doi:10.1002/advs.202105747

    27. [27]

      (27) Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Appl. Catal. B 2018, 224, 10. doi:10.1016/j.apcatb.2017.10.043

    28. [28]

      (28) Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Chem. Eng. J. 2022, 429, 132476. doi:10.1016/j.cej.2021.132476

    29. [29]

      (29) Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Chem. Commun. 2019, 55, 5728. doi:10.1039/c9cc01732a

    30. [30]

      (30) Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Motaghedifard, M. H.; Hosseinpour-Mashkani, S. M. New J. Chem. 2015, 39, 4676. doi:10.1039/c5nj00532a

    31. [31]

      (31) Li, X. B.; Hu Y.; Dong, F.; Huang, J. T.; Han, L.; Deng, F.; Luo, Y. D.; Xie, Y.; He, C. Z.; Feng, Z. J.; et al. Appl. Catal. B 2023, 325, 122341. doi:10.1016/j.apcatb.2022.122341

    32. [32]

      (32) Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi:10.1016/j.apsusc.2022.153422

    33. [33]

      (33) Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Adv. Sci. 2021, 8, 2003626. doi:10.1002/advs.202003626

    34. [34]

      (34) Gao, F. D.; Zeng, D. W.; Huang, Q. W.; Tian, S. Q.; Xie, C. S. Phys. Chem. Chem. Phys. 2012, 14, 10572. doi:10.1039/c2cp41045a

    35. [35]

      (35) Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. New J. Chem. 2018, 42, 16911. doi:10.1039/c8nj03323d

    36. [36]

      (36) Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2023, 325, 122304. doi:10.1016/j.apcatb.2022.122304

    37. [37]

      (37) Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Nano Energy 2019, 57, 398. doi:10.1016/j.nanoen.2018.12.071

    38. [38]

      (38) Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Angew. Chem. Int. Ed. 2021, 60, 12554. doi:10.1002/anie.202102832

    39. [39]

    40. [40]

      (40) Liu, G. P.; Wang, L.; Wang, B.; Zhu, X. W.; Yang, J. M.; Liu, P. J.; Zhu, W. S.; Chen, Z. R.; Xia, J. X. Chin. Chem. Lett. 2023, 34, 107962. doi:10.1016/j.cclet.2022.107962

    41. [41]

      (41) Liu, J. Y.; Zhu, S. M.; Wang, B.; Yang, R. Z.; Wang, R.; Zhu, X. W.; Song, Y. H.; Yuan, J. J.; Xu, H.; Li., H. M. Chin. Chem. Lett. 2023, 34, 107749. doi:10.1016/j.cclet.2022.107749

    42. [42]

    43. [43]

      (43) Yan, X. W.; Wang, B.; Ji, M. X.; Jiang, Q.; Liu, G. P.; Liu, P. J.; Yin, S.; Li, H. M.; Xia, J. X. Chin. J. Struct. Chem. 2022, 41, 2208044. doi:10.14102/j.cnki.0254-5861.2022-0141

    44. [44]

      (44) Yang, J. H.; Hou, Y. P.; Sun, J. L.; Liang, J. X.; Yu, Z. B.; Zhu, H. X.; Wang, S. F. Sep. Purif. Technol. 2022, 299, 121701. doi:10.1016/j.seppur.2022.121701

    45. [45]

      (45) Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Adv. Mater. 2015, 27, 3444. doi:10.1002/adma.201501200

    46. [46]

      (46) Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Appl. Catal. B 2021, 297, 120413. doi:10.1016/j.apcatb.2021.120413

    47. [47]

      (47) Zhu, X. W.; Wang, Z. L.; Zhong, K.; Li, Q. D.; Ding, P. H.; Feng, Z. Y.; Yang, J. M.; Du, Y. S.; Song, Y. H.; Hua, Y. J.; et al. Chem. Eng. J. 2022, 429, 132204. doi:10.1016/j.cej.2021.132204

    48. [48]

      (48) Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Chin. J. Catal. 2022, 43, 1286. doi:10.1016/s1872-2067(21)63954-2

    49. [49]

    50. [50]

      (50) Mo, Z.; Miao, Z. H.; Yan, P. C.; Sun, P. P.; Wu, G. Y.; Zhu, X. W.; Ding, C.; Zhu, Q.; Lei, Y. C.; Xu, H. J. Colloid Interface Sci. 2023, 645, 525. doi:10.1016/j.jcis.2023.04.123

    51. [51]

    52. [52]

      (52) Zhang, Y.; Guo, F. Y.; Wang, K. K.; Di, J.; Min, B.; Zhu, H. Y.; Chen, H. L.; Weng, Y.-X.; Dai, J. Y.; She, Y. B.; et al. Chem. Eng. J. 2023, 465, 142663. doi:10.1016/j.cej.2023.142663

    53. [53]

      (53) Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. ACS Nano 2021, 15, 14453. doi:10.1021/acsnano.1c03961

    54. [54]

      (54) Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem. 2021, 9, 804204. doi:10.3389/fchem.2021.804204

    55. [55]

      (55) Yu, H. B.; Huang, J. H.; Jiang, L. B.; Leng, L. J.; Yi, K. X.; Zhang, W.; Zhang, C. Y.; Yuan, X. Z. Appl. Catal. 2021, 298, 120618. doi:10.1016/j.apcatb.2021.120618

    56. [56]

      (56) Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Chem. Eng. J. 2021, 409, 128178. doi:10.1016/j.cej.2020.128178

    57. [57]

      (57) Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci. 2022, 598, 153758. doi:10.1016/j.apsusc.2022.153758

    58. [58]

      (58) Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M.; et al. Nano Energy 2022, 92, 106671. doi:10.1016/j.nanoen.2021.106671

    59. [59]

      (59) Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Appl. Surf. Sci. 2023, 616, 156530. doi:10.1016/j.apsusc.2023.156530

    60. [60]

      (60) Li, X. F.; Li, K. M.; Ding, D.; Yan, J. T.; Wang, C. L.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. L. Sep. Purif. Technol. 2023, 309, 123054. doi:10.1016/j.seppur.2022.123054

    61. [61]

      (61) Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; et al. Nano Energy 2019, 61, 54. doi:10.1016/j.nanoen.2019.04.029

    62. [62]

      (62) Wang, J. Q.; Cheng, H.; Wei, D. Q.; Li, Z. H. Chin. J. Catal. 2022, 43, 2606. doi:10.1016/S1872-2067(22)64091-9

    63. [63]

      (63) Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209446. doi:10.1002/anie.202209446

    64. [64]

      (64) Ji, M. X.; Feng, J.; Zhao, J. Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. ACS Appl. Nano Mater. 2022, 5, 17226. doi:10.1021/acsanm.2c04232

    65. [65]

      (65) Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi:10.1038/s41560-019-0431-1

    66. [66]

      (66) Wang, J. Y.; Bo, T. T.; Shao, B. Y.; Zhang, Y. Z.; Jia, L. X.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021, 297, 120498. doi:10.1016/j.apcatb.2021.120498

    67. [67]

      (67) Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi:10.1002/anie.202017041

  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(1)
  • Abstract views(150)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return