Citation: Meiran Li,  Yingjie Song,  Xin Wan,  Yang Li,  Yiqi Luo,  Yeheng He,  Bowen Xia,  Hua Zhou,  Mingfei Shao. Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230600. doi: 10.3866/PKU.WHXB202306007 shu

Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation

  • Corresponding author: Hua Zhou,  Mingfei Shao, 
  • Received Date: 2 June 2023
    Revised Date: 7 July 2023
    Accepted Date: 20 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22090030, 22090031, 22288102) and the Fundamental Research Funds for the Central Universities (buctrc202211).

  • Electrocatalytic water splitting driven by renewable energy is a potential approach to obtain green hydrogen. However, the relatively high overpotential of anodic oxygen evolution reaction (OER) is one of the main obstacles hindering the widespread popularity of water electrocatalysis technology. To this end, electrochemical hydrogen-evolution coupled with the oxidation of biomass derived platforms, such as replacing OER with thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR), provides an efficient strategy to lower energy utilization and co-producing valuable organic oxygenates. For instance, 2,5-furandicarboxylic acid (FDCA) is emerging as an important and value-added industrial chemical obtained from HMFOR, which can be used as the monomer of various sustainable bioplastics (e.g., polyesters, polyamides). Great efforts have been devoted to this arena on electrocatalyst engineering for better activity and product selectivity. However, less work has focused on the process scalability of HMFOR to FDCA. Here, we report a simple hydrothermal method to fabricate an array-structured nickel-vanadium layered double hydroxides (NiV-LDH) growth on nickel foam matrix, demonstrating large-sized (6 cm × 10 cm) synthesis of self-supported electrode. The as-prepared material is active and efficient for HMFOR, achieving 100 mA∙cm−2 of current density at 1.52 V vs. RHE (reversible hydrogen electrode) with 94.6% of Faradaic efficiency and 89.1% of yield to FDCA. Compared to traditional water splitting, replacing OER with HMFOR improves the counterpart hydrogen production rate by two-times. As proof-of-concept, we demonstrate the continuous and scalable HMFOR using a low-cost and membrane-free flow reactor system with electrode area of 49.5 cm2. Under a constant current of 10 A, this system achieves high HMF single-pass conversion (94.8%), high FDCA concentration (~186.8 mmol∙L−1), and high FDCA selectivity (98.5%) using 200 mmol∙L−1 of HMF feedstock at a flow rate of 3.62 mL∙min−1. Finally, gram-scale FDCA (119.5 g) can be obtained with hydrogen production using water electrolysis technology. This work highlights that catalyst design and system engineering should be coupled in the future rather than continuing in parallel directions.
  • 加载中
    1. [1]

      (1) Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3

    2. [2]

      (2) Lu, Y.; Liu, T.; Dong, C.-L.; Huang, Y.-C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Adv. Mater. 2021, 33, 2007056. doi: 10.1002/adma.202007056

    3. [3]

    4. [4]

    5. [5]

      (5) Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6

    6. [6]

      (6) Wei, X.; Li, Y.; Chen, L. Shi; J. Angew. Chem. Int. Ed. 2021, 60, 3148. doi: 10.1002/anie.202012066

    7. [7]

      (7) Sherbo, R. S.; Delima; R. S; Chiykowski, V. A.; MacLeod, B. P.; Berlinguette, C. P. Nat. Catal. 2018, 1, 501. doi: 10.1038/s41929-018-0083-8

    8. [8]

      (8) You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639. doi: 10.1021/jacs.6b07127

    9. [9]

      (9) Song, Y.; Ji, K.; Duan, H.; Shao, M. Exploration 2021, 1 (3), 20210050. doi: 10.1002/EXP.20210050

    10. [10]

      (10) Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; et al. Nat. Catal. 2022, 5, 66. doi: 10.1038/s41929-021-00721-y

    11. [11]

      (11) Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163. doi: 10.1002/anie.201807717

    12. [12]

      (12) Wu, J.; Xu, L.; Li, Y.; Dong, C.-L.; Lu, Y.; Nga, T. T. T.; Kong, Z.; Li, S.; Zou, Y.; Wang, S. J. Am. Chem. Soc. 2022, 144, 23649. doi: 10.1021/jacs.2c11153

    13. [13]

      (13) Lin, K.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Cai, K.; Wei, Z.; Liao, Q. 2023, 374, 128775. doi: 10.1016/j.biortech.2023.128775

    14. [14]

      (14) Xia, A.; Lin, K.; Cai, K.; Wei, Z.; Liao, Q. Green Chem. 2022, 24 (24), 9519. doi: 10.1039/D2GC02965K

    15. [15]

    16. [16]

    17. [17]

      (17) He, Z.; Hwang, J.; Gong, Z.; Zhou, M.; Zhang, N.; Kang, X.; Han, J. W.; Chen, Y. Nat. Commun. 2022, 13, 3777. doi: 10.1038/s41467-022-31484-0

    18. [18]

      (18) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B-Environ 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400

    19. [19]

    20. [20]

      (20) Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017

    21. [21]

      (21) Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Chem 2020, 6, 2974. doi: 10.1016/j.chempr.2020.07.022

    22. [22]

      (22) Song, Y.; Li, Z.; Fan, K.; Ren, Z.; Xie, W.; Yang, Y.; Shao, M.; Wei, M. Appl. Catal. B-Environ. 2021, 299, 120669. doi: 10.1016/j.apcatb.2021.120669

    23. [23]

      (23) Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K.; et al. Green Chem., 2021, 23 (11), 4034. doi: 10.1039/d1gc00901j

    24. [24]

      (24) Huang, X.; Song, J.; Hua, M.; Xie, Z.; Liu, S.; Wu, T.; Yang, G.; Han, B. Green Chem. 2020, 22, 843. doi: 10.1039/c9gc03698a

    25. [25]

      (25) Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Adv. Mater. 2020, 32, 2000455. doi: 10.1002/adma.202000455

    26. [26]

      (26) Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2013, 23 (28), 3513. doi: 10.1002/adfm.201202825

    27. [27]

      (27) Li, Z.; Duan, H.; Shao, M.; Li, J.; O'Hare, D.; Wei, M.; Wang, Z. L. Chem 2018, 4 (9), 2168. doi: 10.1016/j.chempr.2018.06.007

    28. [28]

    29. [29]

      (29) Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. ACS Catal. 2020, 10, 5179. doi: 10.1021/acscatal.0c00007

    30. [30]

      (30) Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi: 10.1002/anie.201915803

    31. [31]

      (31) Chavan, H. S.; Lee, C. H.; Inamdar, A. I.; Han, J.; Park, S.; Cho, S.; Shreshta, N. K.; Lee, S. U.; Hou, B.; Im, H.; et al. ACS Catal. 2022, 12, 3821. doi: 10.1021/acscatal.1c05813

    32. [32]

      (32) Lu, Y.; Dong, C.-L.; Huang, Y.-C.; Zou, Y.; Liu, Z.; Liu, Y.; Li, Y.; He, N.; Shi, J.; Wang, S. Angew. Chem. Int. Ed. 2020, 59, 19215. doi: 10.1002/anie.202007767

    33. [33]

      (33) Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895. doi: 10.1002/anie.201908722

    34. [34]

      (34) Zhu, Y.-Q.; Zhou, H.; Dong, J.; Xu, S.-M.; Xu, M.; Zheng, L.; Xu, Q.; Ma, L.; Li, Z.; Shao, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202219048. doi: 10.1002/anie.202219048

    35. [35]

      (35) Wang, C.; Wu, Y.; Bodach, A.; Krebs, M. L.; Schuhmann, W.; Schüth, F. Angew. Chem. Int. Ed. 2023, 62, e202215804. doi: 10.1002/anie.202215804

    36. [36]

      (36) Wöllner, S.; Nowak, T.; Zhang, G.-R.; Rockstroh, N.; Ghanem, H.; Rosiwal, S.; Brückner, A.; Etzold, B. J. M. ChemistryOpen 2021, 10, 600. doi: 10.1002/open.202100072

    37. [37]

      (37) Krebs, M. L.; Bodach, A.; Wang, C. L.; Schueth, F. Green Chem. 2023, 25, 1797. doi: 10.1039/d2gc04732b

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(0)
  • Abstract views(644)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return