Citation: Changxiang Shao, Liangti Qu. Progress on Power Generation from Gas-Liquid Phase Transformation of Water[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230600. doi: 10.3866/PKU.WHXB202306004 shu

Progress on Power Generation from Gas-Liquid Phase Transformation of Water

  • Corresponding author: Liangti Qu, lqu@mail.tsinghua.edu.cn
  • Received Date: 1 June 2023
    Revised Date: 12 July 2023
    Accepted Date: 12 July 2023
    Available Online: 17 July 2023

    Fund Project: the National Natural Science Foundation of China 22035005the National Natural Science Foundation of China 52073159Natural Science Foundation of Shandong Province ZR2022QB227

  • Water, as one of the most abundant natural resources on Earth, possesses immense energy potential. Therefore, harnessing useful energy from water has always been a pursuit. With the rapid advancement of nanoscience and nanotechnology, emerging hydrovoltaic technologies have made it possible to extract electricity from various forms of water through nanomaterial-water interactions. Among these technologies, power generation through the gas-liquid phase transformation of water has garnered significant interest, particularly in the context of electricity generation induced by moisture adsorption and water evaporation. Several factors contribute to the importance of this approach. Firstly, water primarily exists on Earth in liquid and gaseous states. As integral components of the Earth's water cycle, the reversible processes of water vaporization and condensation, which involve the gas-liquid phase transformation, are less restricted by factors such as time, space, geographic location, and environment. Therefore, power generation enabled by moisture/evaporation holds promise as a solution to global energy challenges. Secondly, this method of electricity generation occurs spontaneously and requires minimal artificial assistance or intervention. Thirdly, significant advancements have been made in performance output, delivering sustained volt-level voltage and direct current, surpassing previously reported hydrovoltaic phenomena. Lastly, the electricity production process based on renewable water resources emits no greenhouse gases or pollutants. Given its abundant source, high spontaneity, excellent performance, and environmentally friendly nature, moisture/evaporation-induced electricity generation is expected to emerge as a disruptive future energy technology. In light of this, this review provides a comprehensive overview of the evolution and recent progress in electricity generation induced by moisture adsorption and water evaporation. It explores the underlying interaction mechanisms at the water-material interface and discusses various proposed power generation mechanisms, including ion concentration difference-induced diffusion, streaming potential, ionovoltaic effect, and pseudostreaming. Additionally, it introduces various nanomaterial systems, such as carbon-based materials, polymers, solid oxides, metal derivatives, non-metallic semiconductors, and biological membranes. The review also examines device structures and optimization strategies for further enhancement. Furthermore, it outlines the applications of power generators in direct energy supply, self-powered sensing, electronic components, and other fields. Finally, the review addresses the main challenges and future directions of this emerging technology, aiming to provide valuable research ideas for high-performance power generation devices.
  • 加载中
    1. [1]

      Olabi, A. Energy 2016, 108, 1. doi: 10.1016/j.energy.2016.07.145  doi: 10.1016/j.energy.2016.07.145

    2. [2]

      Liu, Z.; Yi, X.; Gao, F.; Xie, Z.; Han, B.; Sun, Y.; He, M.; Yang, J. Acta Phys. -Chim. Sin. 2023, 39, 2112029.  doi: 10.3866/PKU.WHXB202112029

    3. [3]

      Wang, X.; Lin, F.; Wang, X.; Fang, S.; Tan, J.; Chu, W.; Rong, R.; Yin, J.; Zhang, Z.; Liu, Y. Chem. Soc. Rev. 2022, 51, 4902. doi: 10.1039/d1cs00778e  doi: 10.1039/d1cs00778e

    4. [4]

      Shao, B.; Song, Y.; Song, Z.; Wang, Y.; Wang, Y.; Liu, R.; Sun, B. Adv. Energy Mater. 2023, 13, 2204091. doi: 10.1002/aenm.202204091  doi: 10.1002/aenm.202204091

    5. [5]

      Ghosh, S.; Sood, A.; Kumar, N. Science 2003, 299, 1042. doi: 10.1126/science.1079080  doi: 10.1126/science.1079080

    6. [6]

      Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W. Nat. Commun. 2014, 5, 3582. doi: 10.1038/ncomms4582  doi: 10.1038/ncomms4582

    7. [7]

      Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2014, 9, 378. doi: 10.1038/nnano.2014.56  doi: 10.1038/nnano.2014.56

    8. [8]

      Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Adv. Mater. 2015, 27, 4351. doi: 10.1002/adma.201501867  doi: 10.1002/adma.201501867

    9. [9]

      Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L. Nat. Nanotechnol. 2017, 12, 317. doi: 10.1038/nnano.2016.300  doi: 10.1038/nnano.2016.300

    10. [10]

      Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2018, 13, 1109. doi: 10.1038/s41565-018-0228-6  doi: 10.1038/s41565-018-0228-6

    11. [11]

      Sun, Y.-R.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33, 2173.  doi: 10.3866/PKU.WHXB201705312

    12. [12]

      Xu, W.; Song, Y.; Xu, R. X.; Wang, Z. Adv. Mater. Interfaces 2021, 8, 2000670. doi: 10.1002/admi.202000670  doi: 10.1002/admi.202000670

    13. [13]

      Van Den Berg, A.; Craighead, H. G.; Yang, P. Chem. Soc. Rev. 2010, 39, 8990. doi: 10.1039/c001349h  doi: 10.1039/c001349h

    14. [14]

      Henderson, M. A. Surf. Sci. Rep. 2002, 46, 1. doi: 10.1016/s0167-5729(01)00020-6  doi: 10.1016/s0167-5729(01)00020-6

    15. [15]

      Block, L. P. Astrophys. Space Sci. 1978, 55, 59. doi: 10.1007/BF00642580  doi: 10.1007/BF00642580

    16. [16]

      Daiguji, H. Chem. Soc. Rev. 2010, 39, 901. doi: 10.1039/B820556F  doi: 10.1039/B820556F

    17. [17]

      Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Energy Environ. Sci. 2016, 9, 912. doi: 10.1039/c5ee03701h  doi: 10.1039/c5ee03701h

    18. [18]

      Liang, Y.; Zhao, F.; Cheng, Z.; Deng, Y.; Xiao, Y.; Cheng, H.; Zhang, P.; Huang, Y.; Shao, H.; Qu, L. Energy Environ. Sci. 2018, 11, 1730. doi: 10.1039/C8EE00671G  doi: 10.1039/C8EE00671G

    19. [19]

      Olthuis, W.; Schippers, B.; Eijkel, J.; Van Den Berg, A. Sens. Actuators B-Chem. 2005, 111, 385. doi: 10.1016/j.snb.2005.03.039  doi: 10.1016/j.snb.2005.03.039

    20. [20]

      Zhu, Y.; Zhan, K.; Hou, X. ACS Nano 2018, 12, 908. doi: 10.1021/acsnano.7b07923  doi: 10.1021/acsnano.7b07923

    21. [21]

      Zhao, X.; Shen, D.; Duley, W. W.; Tan, C.; Zhou, Y. N. Adv. Energy Sustain. Res. 2022, 3, 2100196. doi: 10.1002/aesr.202100196  doi: 10.1002/aesr.202100196

    22. [22]

      Yoon, S. G.; Yang, Y.; Yoo, J.; Jin, H.; Lee, W. H.; Park, J.; Kim, Y. S. ACS Appl. Energy Mater. 2019, 1, 1746. doi: 10.1021/acsaelm.9b00419  doi: 10.1021/acsaelm.9b00419

    23. [23]

      Wang, L.; Liu, L.; Solin, N. Nanoscale Adv. 2023, 5, 820. doi: 10.1039/d2na00388k  doi: 10.1039/d2na00388k

    24. [24]

      Jin, H.; Park, J.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Yin, Z.; Kim, Y. S. Small 2021, 17, 2103448. doi: 10.1002/smll.202103448  doi: 10.1002/smll.202103448

    25. [25]

      Jin, H.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Park, J.; Kim, Y. S. Energy Environ. Sci. 2020, 13, 3432. doi: 10.1039/d0ee02190c  doi: 10.1039/d0ee02190c

    26. [26]

      Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I.-D. ACS Nano 2019, 13, 12703. doi: 10.1021/acsnano.9b04375  doi: 10.1021/acsnano.9b04375

    27. [27]

      Bae, J.; Kim, M. S.; Oh, T.; Suh, B. L.; Yun, T. G.; Lee, S.; Hur, K.; Gogotsi, Y.; Koo, C. M.; Kim, I.-D. Energy Environ. Sci. 2022, 15, 123. doi: 10.1039/d1ee00859e  doi: 10.1039/d1ee00859e

    28. [28]

      Bae, J.; Yun, T. G.; Suh, B. L.; Kim, J.; Kim, I.-D. Energy Environ. Sci. 2020, 13, 527. doi: 10.1039/c9ee02616a  doi: 10.1039/c9ee02616a

    29. [29]

      Sun, Z.; Feng, L.; Xiong, C.; He, X.; Wang, L.; Qin, X.; Yu, J. J. Mater. Chem. A 2021, 9, 7085. doi: 10.1039/d0ta11974a  doi: 10.1039/d0ta11974a

    30. [30]

      Wang, K.; Xu, W.; Zhang, W.; Wang, X.; Yang, X.; Li, J.; Zhang, H.; Li, J.; Wang, Z. Nano Res. Energy 2023, 2, e9120042. doi: 10.26599/NRE.2023.9120042  doi: 10.26599/NRE.2023.9120042

    31. [31]

      Yan, J.; Ye, F.; Dai, Q.; Ma, X.; Fang, Z.; Dai, L.; Hu, C. Nano Res. Energy 2023, 2, e9120047. doi: 10.26599/NRE.2023.9120047  doi: 10.26599/NRE.2023.9120047

    32. [32]

      Cheng, H.; Huang, Y.; Zhao, F.; Yang, C.; Zhang, P.; Jiang, L.; Shi, G.; Qu, L. Energy Environ. Sci. 2018, 11, 2839. doi: 10.1039/c8ee01502c  doi: 10.1039/c8ee01502c

    33. [33]

      Zhang, B.; Wang, K.; Ji, X.; Wang, S.; Qiu, Y. J. Alloys Compd. 2019, 810, 151880. doi: 10.1016/j.jallcom.2019.151880  doi: 10.1016/j.jallcom.2019.151880

    34. [34]

      Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. ACS Appl. Mater. Interfaces 2019, 11, 26970. doi: 10.1021/acsami.9b08056  doi: 10.1021/acsami.9b08056

    35. [35]

      Xu, T.; Ding, X.; Shao, C.; Song, L.; Lin, T.; Gao, X.; Xue, J.; Zhang, Z.; Qu, L. Small 2018, 14, 1704473. doi: 10.1002/smll.201704473  doi: 10.1002/smll.201704473

    36. [36]

      Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. Adv. Funct. Mater. 2017, 27, 1700551. doi: 10.1002/adfm.201700551  doi: 10.1002/adfm.201700551

    37. [37]

      Liu, K.; Ding, T.; Li, J.; Chen, Q.; Xue, G.; Yang, P.; Xu, M.; Wang, Z. L.; Zhou, J. Adv. Energy Mater. 2018, 8, 1702481. doi: 10.1002/aenm.201702481  doi: 10.1002/aenm.201702481

    38. [38]

      Lee, K. H.; Kang, D. J.; Eom, W.; Lee, H.; Han, T. H. Chem. Eng. J. 2022, 430, 132759. doi: 10.1016/j.cej.2021.132759  doi: 10.1016/j.cej.2021.132759

    39. [39]

      Zhang, G.; Duan, Z.; Qi, X.; Xu, Y.; Li, L.; Ma, W.; Zhang, H.; Liu, C.; Yao, W. Carbon 2019, 148, 1. doi: 10.1016/j.carbon.2019.03.041  doi: 10.1016/j.carbon.2019.03.041

    40. [40]

      Hou, B.; Kong, D.; Qian, J.; Yu, Y.; Cui, Z.; Liu, X.; Wang, J.; Mei, T.; Li, J.; Wang, X. Carbon 2018, 140, 488. doi: 10.1016/j.carbon.2018.09.005  doi: 10.1016/j.carbon.2018.09.005

    41. [41]

      Tabrizizadeh, T.; Wang, J.; Kumar, R.; Chaurasia, S.; Stamplecoskie, K.; Liu, G. ACS Appl. Mater. Interfaces 2021, 13, 50900. doi: 10.1021/acsami.1c13487  doi: 10.1021/acsami.1c13487

    42. [42]

      Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L. Energy Environ. Sci. 2019, 12, 972. doi: 10.1039/c9ee00252a  doi: 10.1039/c9ee00252a

    43. [43]

      Wang, H.; Cheng, H.; Huang, Y.; Yang, C.; Wang, D.; Li, C.; Qu, L. Nano Energy 2020, 67, 104238. doi: 10.1016/j.nanoen.2019.104238  doi: 10.1016/j.nanoen.2019.104238

    44. [44]

      He, W.; Wang, H.; Huang, Y.; He, T.; Chi, F.; Cheng, H.; Liu, D.; Dai, L.; Qu, L. Nano Energy 2022, 95, 107017. doi: 10.1016/j.nanoen.2022.107017  doi: 10.1016/j.nanoen.2022.107017

    45. [45]

      Li, J.; Liu, K.; Ding, T.; Yang, P.; Duan, J.; Zhou, J. Nano Energy 2019, 58, 797. doi: 10.1016/j.nanoen.2019.02.011  doi: 10.1016/j.nanoen.2019.02.011

    46. [46]

      Lyu, Q.; Peng, B.; Xie, Z.; Du, S.; Zhang, L.; Zhu, J. ACS Appl. Mater. Interfaces 2020, 12, 57373. doi: 10.1021/acsami.0c17931  doi: 10.1021/acsami.0c17931

    47. [47]

      Gao, X.; Xu, T.; Shao, C.; Han, Y.; Lu, B.; Zhang, Z.; Qu, L. J. Mater. Chem. A 2019, 7, 20574. doi: 10.1039/c9ta08264f  doi: 10.1039/c9ta08264f

    48. [48]

      Das, S. S.; Pedireddi, V. M.; Bandopadhyay, A.; Saha, P.; Chakraborty, S. Nano Lett. 2019, 19, 7191. doi: 10.1021/acs.nanolett.9b02783  doi: 10.1021/acs.nanolett.9b02783

    49. [49]

      Dao, V.-D.; Vu, N. H.; Choi, H.-S. J. Power Sources 2020, 448, 227388. doi: 10.1016/j.jpowsour.2019.227388  doi: 10.1016/j.jpowsour.2019.227388

    50. [50]

      Li, L.; Gao, S.; Hao, M.; Yang, X.; Feng, S.; Li, L.; Wang, S.; Xiong, Z.; Sun, F.; Li, Y. et al. Nano Energy 2021, 85, 105970. doi: 10.1016/j.nanoen.2021.105970  doi: 10.1016/j.nanoen.2021.105970

    51. [51]

      Liu, X.; Gao, H.; Ward, J. E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D. R.; Yao, J. Nature 2020, 578, 550. doi: 10.1038/s41586-020-2010-9  doi: 10.1038/s41586-020-2010-9

    52. [52]

      Liu, J.; Huang, L.; He, W.; Cai, X.; Wang, Y.; Zhou, L.; Yuan, Y. Nano Energy 2022, 102, 107709. doi: 10.1016/j.nanoen.2022.107709  doi: 10.1016/j.nanoen.2022.107709

    53. [53]

      Yang, W.; Lv, L.; Li, X.; Han, X.; Li, M.; Li, C. ACS Nano 2020, 14, 10600. doi: 10.1021/acsnano.0c04686  doi: 10.1021/acsnano.0c04686

    54. [54]

      Wang, Z.; Li, J.; Shao, C.; Lin, X.; Yang, Y.; Chen, N.; Wang, Y.; Qu, L. Nano Energy 2021, 90, 106529. doi: 10.1016/j.nanoen.2021.106529  doi: 10.1016/j.nanoen.2021.106529

    55. [55]

      Mandal, S.; Roy, S.; Mandal, A.; Ghoshal, T.; Das, G.; Singh, A.; Goswami, D. K. ACS Appl. Energy Mater. 2020, 2, 780. doi: 10.1021/acsaelm.9b00842  doi: 10.1021/acsaelm.9b00842

    56. [56]

      Zhang, Y.; Lu, H.; Liang, X.; Zhang, M.; Liang, H.; Zhang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2103034. [  doi: 10.3866/PKU.WHXB202103034

    57. [57]

      Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Adv. Mater. 2018, 30, 1705925. doi: 10.1002/adma.201705925  doi: 10.1002/adma.201705925

    58. [58]

      Shen, D.; Xiao, M.; Xiao, Y.; Zou, G.; Hu, L.; Zhao, B.; Liu, L.; Duley, W. W.; Zhou, Y. N. ACS Appl. Mater. Interfaces 2019, 11, 14249. doi: 10.1021/acsami.9b01523  doi: 10.1021/acsami.9b01523

    59. [59]

      Wang, L.; Feng, L.; Sun, Z.; He, X.; Wang, R.; Qin, X.; Yu, J. Sci. China Technol. Sci. 2022, 165, 450. doi: 10.1007/s11431-021-1969-y  doi: 10.1007/s11431-021-1969-y

    60. [60]

      Shao, C.; Ji, B.; Xu, T.; Gao, J.; Gao, X.; Xiao, Y.; Zhao, Y.; Chen, N.; Jiang, L.; Qu, L. ACS Appl. Mater. Interfaces 2019, 11, 30927. doi: 10.1021/acsami.9b09582  doi: 10.1021/acsami.9b09582

    61. [61]

      Ji, B.; Chen, N.; Shao, C.; Liu, Q.; Gao, J.; Xu, T.; Cheng, H.; Qu, L. J. Mater. Chem. A 2019, 7, 6766. doi: 10.1039/c8ta12328d  doi: 10.1039/c8ta12328d

    62. [62]

      Liu, T.; Zheng, Y.; Hao, C.; Hong, W.; Wang, F.; Jang, H.; Hu, Y.; Li, C. Appl. Mater. Today 2023, 32, 101801. doi: 10.1016/j.apmt.2023.101801  doi: 10.1016/j.apmt.2023.101801

    63. [63]

      Hou, Y.; Zhang, X.-Y.; Liu, C.; Yin, C.; Yin, Z. Nano Energy 2023, 110, 108338. doi: 10.1016/j.nanoen.2023.108338  doi: 10.1016/j.nanoen.2023.108338

    64. [64]

      Wang, H.; Shi, G. Acta Phys. -Chim. Sin. 2018, 34, 22.  doi: 10.3866/PKU.WHXB201706302

    65. [65]

      Tian, J.; Zang, Y.; Sun, J.; Qu, J.; Gao, F.; Liang, G. Nano Energy 2020, 70, 104502. doi: 10.1016/j.nanoen.2020.104502  doi: 10.1016/j.nanoen.2020.104502

    66. [66]

      Sun, J.; Li, P.; Qu, J.; Lu, X.; Xie, Y.; Gao, F.; Li, Y.; Gang, M.; Feng, Q.; Liang, H. Nano Energy 2019, 57, 269. doi: 10.1016/j.nanoen.2018.12.042  doi: 10.1016/j.nanoen.2018.12.042

    67. [67]

      Ma, Q.; He, Q.; Yin, P.; Cheng, H.; Cui, X.; Yun, Q.; Zhang, H. Adv. Mater. 2020, 32, 2003720. doi: 10.1002/adma.202003720  doi: 10.1002/adma.202003720

    68. [68]

      Li, Z.; Ma, X.; Chen, D.; Wan, X.; Wang, X.; Fang, Z.; Peng, X. Adv. Sci. 2021, 8, 2004552. doi: 10.1002/advs.202004552  doi: 10.1002/advs.202004552

    69. [69]

      Bai, Y.; Sun, L.; Yu, Q.; Lei, Y.; Liu, B. Nano Res. Energy 2023, 2, e9120043. doi: 10.26599/NRE.2023.9120043  doi: 10.26599/NRE.2023.9120043

    70. [70]

      He, D.; Yang, Y.; Zhou, Y.; Wan, J.; Wang, H.; Fan, X.; Li, Q.; Huang, H. Nano Energy 2021, 81, 105630. doi: 10.1016/j.nanoen.2020.105630  doi: 10.1016/j.nanoen.2020.105630

    71. [71]

      Qin, Y.; Wang, Y.; Sun, X.; Li, Y.; Xu, H.; Tan, Y.; Li, Y.; Song, T.; Sun, B. Angew. Chem. Int. Ed. 2020, 132, 10706. doi: 10.1002/anie.202002762  doi: 10.1002/anie.202002762

    72. [72]

      Shao, B.; Song, Z.; Chen, X.; Wu, Y.; Li, Y.; Song, C.; Yang, F.; Song, T.; Wang, Y.; Lee, S.-T. ACS Nano 2021, 15, 7472. doi: 10.1021/acsnano.1c00891  doi: 10.1021/acsnano.1c00891

    73. [73]

      Shao, B.; Wu, Y.; Chen, X.; Song, Z.; Li, Y.; Hong, Z.; Yang, F.; Song, T.; Wang, Y.; Sun, B. Adv. Mater. Interfaces 2021, 8, 2101213. doi: 10.1002/admi.202101213  doi: 10.1002/admi.202101213

    74. [74]

      Shao, B.; Wu, Y.; Song, Z.; Yang, H.; Chen, X.; Zou, Y.; Zang, J.; Yang, F.; Song, T.; Wang, Y. Nano Energy 2022, 94, 106917. doi: 10.1016/j.nanoen.2022.106917  doi: 10.1016/j.nanoen.2022.106917

    75. [75]

      Han, Y.; Pang, D.; Xiong, Z.; Zhao, X.; Li, C.; Pang, X.; Sun, J. Chem. Phys. 2020, 538, 110858. doi: 10.1016/j.chemphys.2020.110858  doi: 10.1016/j.chemphys.2020.110858

    76. [76]

      Lü, J.; Ren, G.; Hu, Q.; Rensing, C.; Zhou, S. Trends Biotechnol. 2023. doi: 10.1016/j.tibtech.2023.03.012  doi: 10.1016/j.tibtech.2023.03.012

    77. [77]

      Ren, G.; Hu, Q.; Ye, J.; Liu, X.; Zhou, S.; He, Z. Chem. Eng. J. 2022, 441, 135921. doi: 10.1016/j.cej.2022.135921  doi: 10.1016/j.cej.2022.135921

    78. [78]

      Ren, G.; Wang, Z.; Zhang, B.; Liu, X.; Ye, J.; Hu, Q.; Zhou, S. Nano Energy 2021, 89, 106361. doi: 10.1016/j.nanoen.2021.106361  doi: 10.1016/j.nanoen.2021.106361

    79. [79]

      Hu, Q.; Ma, Y.; Ren, G.; Zhang, B.; Zhou, S. Sci. Adv. 2022, 8, eabm8047. doi: 10.1126/sciadv.abm8047  doi: 10.1126/sciadv.abm8047

    80. [80]

      Liu, X.; Ueki, T.; Gao, H.; Woodard, T. L.; Nevin, K. P.; Fu, T.; Fu, S.; Sun, L.; Lovley, D. R.; Yao, J. Nat. Commun. 2022, 13, 4369. doi: 10.1038/s41467-022-32105-6  doi: 10.1038/s41467-022-32105-6

    81. [81]

      Liang, Y.; Zhao, F.; Cheng, Z.; Zhou, Q.; Shao, H.; Jiang, L.; Qu, L. Nano Energy 2017, 32, 329. doi: 10.1016/j.nanoen.2016.12.062  doi: 10.1016/j.nanoen.2016.12.062

    82. [82]

      Li, L.; Chen, Z.; Hao, M.; Wang, S.; Sun, F.; Zhao, Z.; Zhang, T. Nano Lett. 2019, 19, 5544. doi: 10.1021/acs.nanolett.9b02081  doi: 10.1021/acs.nanolett.9b02081

    83. [83]

      Shao, C.; Gao, J.; Xu, T.; Ji, B.; Xiao, Y.; Gao, C.; Zhao, Y.; Qu, L. Nano Energy 2018, 53, 698. doi: 10.1016/j.nanoen.2018.09.043  doi: 10.1016/j.nanoen.2018.09.043

    84. [84]

      Li, Y.; Cui, J.; Shen, H.; Liu, C.; Wu, P.; Qian, Z.; Duan, Y.; Liu, D. Nano Energy 2022, 96, 107065. doi: 10.1016/j.nanoen.2022.107065  doi: 10.1016/j.nanoen.2022.107065

    85. [85]

      He, W.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022, 38, 2203004.  doi: 10.3866/PKU.WHXB202203004

    86. [86]

      Zhu, R.; Zhu, Y.; Chen, F.; Patterson, R.; Zhou, Y.; Wan, T.; Hu, L.; Wu, T.; Joshi, R.; Li, M.; et al. Nano Energy 2022, 94, 106942. doi: 10.1016/j.nanoen.2022.106942  doi: 10.1016/j.nanoen.2022.106942

    87. [87]

      Nie, X.; Ji, B.; Chen, N.; Liang, Y.; Han, Q.; Qu, L. Nano Energy 2018, 46, 297. doi: 10.1016/j.nanoen.2018.02.012  doi: 10.1016/j.nanoen.2018.02.012

    88. [88]

      Chen, N.; Liu, Q.; Liu, C.; Zhang, G.; Jing, J.; Shao, C.; Han, Y.; Qu, L. Nano Energy 2019, 65, 104047. doi: 10.1016/j.nanoen.2019.104047  doi: 10.1016/j.nanoen.2019.104047

    89. [89]

      Lu, W.; Ding, T.; Wang, X.; Zhang, C.; Li, T.; Zeng, K.; Ho, G. W. Nano Energy 2022, 104, 107892. doi: 10.1016/j.nanoen.2022.107892  doi: 10.1016/j.nanoen.2022.107892

    90. [90]

      Wang, H.; Sun, Y.; He, T.; Huang, Y.; Cheng, H.; Li, C.; Xie, D.; Yang, P.; Zhang, Y.; Qu, L. Nat. Nanotechnol. 2021, 16, 811. doi: 10.1038/s41565-021-00903-6  doi: 10.1038/s41565-021-00903-6

    91. [91]

      He, T.; Wang, H.; Lu, B.; Guang, T.; Yang, C.; Huang, Y.; Cheng, H.; Qu, L. Joule 2023, 7, 935. doi: 10.1016/j.joule.2023.04.007  doi: 10.1016/j.joule.2023.04.007

    92. [92]

      Yang, W.; Li, X.; Han, X.; Zhang, W.; Wang, Z.; Ma, X.; Li, M.; Li, C. Nano Energy 2020, 71, 104610. doi: 10.1016/j.nanoen.2020.104610  doi: 10.1016/j.nanoen.2020.104610

    93. [93]

      Cai, T.; Lan, L.; Peng, B.; Zhang, C.; Dai, S.; Zhang, C.; Ping, J.; Ying, Y. Nano Lett. 2022, 22, 6476. doi: 10.1021/acs.nanolett.2c00919  doi: 10.1021/acs.nanolett.2c00919

    94. [94]

      Sun, Z.; Feng, L.; Wen, X.; Wang, L.; Qin, X.; Yu, J. Mater. Horiz. 2021, 8, 2303. doi: 10.1039/D1MH00565K  doi: 10.1039/D1MH00565K

    95. [95]

      Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L. Nat. Commun. 2018, 9, 4166. doi: 10.1038/s41467-018-06633-z  doi: 10.1038/s41467-018-06633-z

    96. [96]

      Sun, Z.; Wen, X.; Wang, L.; Yu, J.; Qin, X. Energy Environ. Sci. 2022, 15, 4584. doi: 10.1039/D2EE02046G  doi: 10.1039/D2EE02046G

    97. [97]

      Bai, J.; Hu, Y.; Guang, T.; Zhu, K.; Wang, H.; Cheng, H.; Liu, F.; Qu, L. Energy Environ. Sci. 2022, 15, 3086. doi: 10.1039/D2EE00846G  doi: 10.1039/D2EE00846G

    98. [98]

      Bai, J.; Huang, Y.; Wang, H.; Guang, T.; Liao, Q.; Cheng, H.; Deng, S.; Li, Q.; Shuai, Z.; Qu, L. Adv. Mater. 2022, 34, 2103897. doi: 10.1002/adma.202103897  doi: 10.1002/adma.202103897

    99. [99]

      Ren, G.; Hu, Q.; Ye, J.; Hu, A.; Lü, J.; Zhou, S. Research 2022, 2022, 9873203. doi: 10.34133/2022/9873203  doi: 10.34133/2022/9873203

    100. [100]

      Liu, C.; Ye, C.; Wu, Y.; Liu, Y.; Liu, Z.; Chen, Z.; Ma, R.; Sakai, N.; Xue, L.; Sun, J.; et al. Nano Energy 2023, 110, 108348. doi: 10.1016/j.nanoen.2023.108348  doi: 10.1016/j.nanoen.2023.108348

    101. [101]

      Li, J.; Liu, K.; Xue, G.; Ding, T.; Yang, P.; Chen, Q.; Shen, Y.; Li, S.; Feng, G.; Shen, A.; et al. Nano Energy 2018, 48, 211. doi: 10.1016/j.nanoen.2018.02.061  doi: 10.1016/j.nanoen.2018.02.061

    102. [102]

      Tan, J.; Fang, S.; Zhang, Z.; Yin, J.; Li, L.; Wang, X.; Guo, W. Nat. Commun. 2022, 13, 3643. doi: 10.1038/s41467-022-31221-7  doi: 10.1038/s41467-022-31221-7

    103. [103]

      Zhao, K.; Lee, J. W.; Yu, Z. G.; Jiang, W.; Oh, J. W.; Kim, G.; Han, H.; Kim, Y.; Lee, K.; Lee, S.; et al. ACS Nano 2023, 17, 5472. doi: 10.1021/acsnano.2c10747  doi: 10.1021/acsnano.2c10747

    104. [104]

      Li, L.; Hao, M.; Yang, X.; Sun, F.; Bai, Y.; Ding, H.; Wang, S.; Zhang, T. Nano Energy 2020, 72, 104663. doi: 10.1016/j.nanoen.2020.104663  doi: 10.1016/j.nanoen.2020.104663

    105. [105]

      Wang, Y.; Hu, J.; Yu, L.; Wu, X.; Zhang, Y.; Xu, H. Nano Res. Energy 2023, 2, e9120062. doi: 10.26599/NRE.2023.9120062  doi: 10.26599/NRE.2023.9120062

    106. [106]

      Li, L.; Feng, S.; Bai, Y.; Yang, X.; Liu, M.; Hao, M.; Wang, S.; Wu, Y.; Sun, F.; Liu, Z.; et al. Nat. Commun. 2022, 13, 1043. doi: 10.1038/s41467-022-28689-8  doi: 10.1038/s41467-022-28689-8

    107. [107]

      Chen, X.; Jiang, C.; Song, Y.; Shao, B.; Wu, Y.; Song, Z.; Song, T.; Wang, Y.; Sun, B. Nano Energy 2022, 100, 107495. doi: 10.1016/j.nanoen.2022.107495  doi: 10.1016/j.nanoen.2022.107495

    108. [108]

      Wang, Y.; Dai, M.; Wu, H.; Xu, L.; Zhang, T.; Chen, W.; Wang, Z. L.; Yang, Y. Nano Energy 2021, 90, 106499. doi: 10.1016/j.nanoen.2021.106499  doi: 10.1016/j.nanoen.2021.106499

    109. [109]

      Hu, C.; Hu, J.; Liu, M.; Zhou, Y.; Rong, J.; Zhou, J. Acta Phys. -Chim. Sin. 2022, 38, 2012083.  doi: 10.3866/PKU.WHXB202012083

    110. [110]

      Huangfu, X.; Guo, Y.; Mugo, S. M.; Zhang, Q. Small 2023, 19, 2207134. doi: 10.1002/smll.202207134  doi: 10.1002/smll.202207134

    111. [111]

      Guan, H.; Zhong, T.; He, H.; Zhao, T.; Xing, L.; Zhang, Y.; Xue, X. Nano Energy 2019, 59, 754. doi: 10.1016/j.nanoen.2019.03.026  doi: 10.1016/j.nanoen.2019.03.026

    112. [112]

      Lei, D.; Zhang, Q.; Liu, N.; Su, T.; Wang, L.; Ren, Z.; Zhang, Z.; Su, J.; Gao, Y. Adv. Funct. Mater. 2022, 32, 2107330. doi: 10.1002/adfm.202107330  doi: 10.1002/adfm.202107330

    113. [113]

      Guan, H.; Mao, G.; Zhong, T.; Zhao, T.; Liang, S.; Xing, L.; Xue, X. J. Alloys Compd. 2021, 867, 159073. doi: 10.1016/j.jallcom.2021.159073  doi: 10.1016/j.jallcom.2021.159073

    114. [114]

      Zhong, T.; Guan, H.; Dai, Y.; He, H.; Xing, L.; Zhang, Y.; Xue, X. Nano Energy 2019, 60, 52. doi: 10.1016/j.nanoen.2019.03.041  doi: 10.1016/j.nanoen.2019.03.041

    115. [115]

      Xue, J.; Zhao, F.; Hu, C.; Zhao, Y.; Luo, H.; Dai, L.; Qu, L. Adv. Funct. Mater. 2016, 26, 8784. doi: 10.1002/adfm.201604188  doi: 10.1002/adfm.201604188

    116. [116]

      Wen, P.; Ren, J.; Ling, S. ACS Appl. Electron. Mater. 2023, 5, 2082. doi: 10.1021/acsaelm.2c01747  doi: 10.1021/acsaelm.2c01747

    117. [117]

      Cheng, H.; Huang, Y.; Qu, L.; Cheng, Q.; Shi, G.; Jiang, L. Nano Energy 2018, 45, 37. doi: 10.1016/j.nanoen.2017.12.033  doi: 10.1016/j.nanoen.2017.12.033

    118. [118]

      Hou, C.; Tai, G.; Liu, Y.; Wu, Z.; Liang, X.; Liu, X. Nano Res. Energy 2023, 2, e9120051. doi: 10.26599/NRE.2023.9120051  doi: 10.26599/NRE.2023.9120051

    119. [119]

      Zhao, F.; Wang, L.; Zhao, Y.; Qu, L.; Dai, L. Adv. Mater. 2017, 29, 1604972. doi: 10.1002/adma.201604972  doi: 10.1002/adma.201604972

    120. [120]

      Huang, L.; Xu, S.; Wang, Z.; Xue, K.; Su, J.; Song, Y.; Chen, S.; Zhu, C.; Tang, B. Z.; Ye, R. ACS Nano 2020, 14, 12045. doi: 10.1021/acsnano.0c05330  doi: 10.1021/acsnano.0c05330

    121. [121]

      Xiao, P.; He, J.; Ni, F.; Zhang, C.; Liang, Y.; Zhou, W.; Gu, J.; Xia, J.; Kuo, S.-W.; Chen, T. Nano Energy 2020, 68, 104385. doi: 10.1016/j.nanoen.2019.104385  doi: 10.1016/j.nanoen.2019.104385

    122. [122]

      Huang, J.; Pereira, V.; Wang, C.; Li, H.; Lee, H. K.; Han, J. J. Mater. Chem. A 2023, 11, 8110. doi: 10.1039/D3TA00032J  doi: 10.1039/D3TA00032J

    123. [123]

      Liu, J.; Gui, J.; Zhou, W.; Tian, X.; Liu, Z.; Wang, J.; Liu, J.; Yang, L.; Zhang, P.; Huang, W.; et al. Nano Energy 2021, 86, 106112. doi: 10.1016/j.nanoen.2021.106112  doi: 10.1016/j.nanoen.2021.106112

    124. [124]

      Xin, X.; Zhang, Y.; Wang, R.; Wang, Y.; Guo, P.; Li, X. Nat. Commun. 2023, 14, 1759. doi: 10.1038/s41467-023-37366-3  doi: 10.1038/s41467-023-37366-3

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    16. [16]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(123)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return