Citation: Zhuoran Lu,  Shengkai Li,  Yuxuan Lu,  Shuangyin Wang,  Yuqin Zou. Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230600. doi: 10.3866/PKU.WHXB202306003 shu

Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts

  • Corresponding author: Yuqin Zou, yuqin_zou@hnu.edu.cn
  • Received Date: 1 June 2023
    Revised Date: 3 July 2023
    Accepted Date: 3 July 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (22122901), the Provincial Natural Science Foundation of Hunan, China (2021JJ0008, 2021JJ20024, 2021RC3054), the Shenzhen Science and Technology Program, China (JCYJ20210324140610028).

  • Transforming the current structure of energy production and consumption, which currently excessively relies on fossil fuels, into a more efficient utilization of renewable energy, is an effective solution for addressing the energy crisis and achieving carbon neutrality. Biomass represents one of the most promising sources of renewable energy, capable of replacing fossil fuels and yielding valuable organic compounds. In recent years, the vigorous utilization of biomass energy sources has become an inevitable trend. The conventional thermochemical catalysis method used for biomass conversion often requires harsh conditions, such as high temperatures and pressures, and even external sources of hydrogen or oxygen. In comparison, the electrocatalytic conversion of organic molecules derived from biomass offers a greener and more efficient strategy for producing high-value chemicals under relatively mild conditions. Particularly, the cleavage of carbon chains through C―C bond cleavage is crucial in transforming biomass-derived molecules into short-chain chemicals of high value. Numerous studies have demonstrated that transition metal (TM) electrocatalysts play a critical role in the C―C bond cleavage of organic compounds, owing to their rich 3d electron structure and unique eg orbitals that enhance the covalence of transition metal-oxygen bonds. Moreover, the coordination environments and electronic structures of TM electrocatalysts can influence the selectivity of the products. Undoubtedly, well-defined active sites and reaction pathways facilitate a comprehensive understanding of the structure-activity relationship between catalyst structure and reaction activity. However, the electrocatalytic cleavage of C―C bonds for biomass upgrading on TM electrocatalysts is still in its initial stages, and the reaction mechanism and catalytic processes remain unclear. Therefore, there is a need to systematically comprehend the role of electrocatalysts at the atomic level during the C―C bond cleavage process. This review begins by providing an overview of the extensively studied TM electrocatalysts that mediate C―C bond cleavage reactions of organic molecules derived from biomass, including glycerol, cyclohexanol, lignin, and furfural. Several representative examples and corresponding reaction pathways are presented. Subsequently, we systematically review the reaction mechanisms underlying the catalytic C―C bond cleavage by transition metal compounds, elucidate interfacial behaviors, and establish a structure-activity relationship between the structure of TM electrocatalysts and cleavage reaction activity. Finally, we provide a brief summary of the content covered and highlight the challenges and prospects in exploring C―C bond cleavage on TM electrocatalysts. It is anticipated that this work will serve as a guide for the controlled conversion of biomass and the rational design of TM electrocatalysts for C―C bond cleavage.
  • 加载中
    1. [1]

      (1) Araji, N.; Madjinza, D. D.; Chatel, G.; Moores, A.; Jérôme, F.; Vigier, K. D. O. Green Chem. 2017, 19, 98. doi: 10.1039/C6GC02620F

    2. [2]

      (2) Li, K.; Sun, Y. Chem-Eur. J. 2018, 24, 18258. doi: 10.1002/chem.201803319

    3. [3]

      (3) Du, L.; Shao, Y.; Sun, J.; Yin, G.; Du, C.; Wang, Y. Catal. Sci. Technol. 2018, 8, 3216. doi: 10.1039/c8cy00533h

    4. [4]

      (4) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.; Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain. Chem. Eng. 2017, 5, 6626. doi: 10.1021/acssuschemeng.7b00868

    5. [5]

      (5) Wang, H.; Thia, L.; Li, N.; Ge, X.; Liu, Z.; Wang, X. ACS Catal. 2015, 5, 3174. doi: 10.1021/acscatal.5b00183

    6. [6]

      (6) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8, 6301. doi: 10.1021/acscatal.8b01317

    7. [7]

      (7) Si, D.; Xiong, B.; Chen, L.; Shi, J. Chem Catal. 2021, 1, 941. doi: 10.1016/j.checat.2021.08.001

    8. [8]

      (8) Li, Y.; Peng, Y.-K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K.-Y.; Taylor, R. A. Nat. Commun. 2019, 10, 4421. doi: 10.1038/s41467-019-12385-1

    9. [9]

      (9) Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. J. Power Sources 2009, 190, 241. doi: 10.1016/j.jpowsour.2009.01.044

    10. [10]

      (10) Caliman, C. C.; Palma, L.; Ribeiro, J. J. Electrochem. Soc. 2013, 160, F853. doi: 10.1149/2.073308jes

    11. [11]

      (11) Habibi, B.; Ghaderi, S. Int. J. Hydrog. Energy 2015, 40, 5115. doi: 10.1016/j.ijhydene.2015.02.103

    12. [12]

      (12) Fernández, P. S.; Martins, C. A.; Martins, M. E.; Camara, G. A. Electrochim. Acta 2013, 112, 686. doi: 10.1016/j.electacta.2013.09.032

    13. [13]

      (13) Lopes, F. S.; Nogueira, T.; Do Lago, C. L.; Gutz, I. G. Electroanalysis 2011, 23, 2516. doi: 10.1002/elan.201100321

    14. [14]

      (14) Jeffery, D. Z.; Camara, G. A. Electrochem. Commun. 2010, 12, 1129. doi: 10.1016/j.elecom.2010.06.001

    15. [15]

      (15) Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. ACS Catal. 2012, 2, 759. doi: 10.1021/cs200599g

    16. [16]

      (16) Kwon, Y.; Lai, S. C.; Rodriguez, P.; Koper, M. T. J. Am. Chem. Soc. 2011, 133, 6914. doi: 10.1021/ja200976j

    17. [17]

      (17) Simões, M.; Baranton, S.; Coutanceau. Appl. Catal. B. Environ. 2010, 93, 354. doi: 10.1016/j.apcatb.2009.10.008

    18. [18]

      (18) Yongprapat, S.; Therdthianwong, A.; Therdthianwong, S. J. Appl. Electrochem. 2012, 42, 483. doi: 10.1007/s10800-012-0423-3

    19. [19]

      (19) Yongprapat, S.; Therdthianwong, S.; Therdthianwong, A. Electrochim. Acta 2012, 83, 87. doi: 10.1016/j.electacta.2012.08.031

    20. [20]

      (20) Zhang, Z.; Xin, L.; Li, W. Int. J. Hydrog. Energy 2012, 37, 9393. doi: 10.1016/j.ijhydene.2012.03.019

    21. [21]

      (21) Zhou, H.; Li, Z.; Xu, S. M.; Lu, L.; Xu, M.; Ji, K.; Ge, R.; Yan, Y.; Ma, L.; Kong, X.; et al. Angew. Chem. Int. Ed. 2021, 60, 8976. doi: 10.1002/anie.202015431

    22. [22]

      (22) Dash, S.; Munichandraiah, N. J. Electrochem. Soc. 2013, 160, H197. doi: 10.1149/2.007304jes

    23. [23]

      (23) Renard, D.; Mccain, C.; Baidoun, B.; Bondy, A.; Bandyopadhyay, K. Colloids Surf. A 2014, 463, 44. doi: 10.1016/j.colsurfa.2014.09.027

    24. [24]

      (24) Zhiani, M.; Rostami, H.; Majidi, S.; Karami, K. Int. J. Hydrog. Energy 2013, 38, 5435. doi: 10.1016/j.ijhydene.2012.09.001

    25. [25]

      (25) Zalineeva, A.; Baranton, S.; Coutanceau, C. Electrochim. Acta 2015, 176, 705. doi: 10.1016/j.electacta.2015.07.073

    26. [26]

      (26) Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. J. Catal. 2017, 356, 14. doi: 10.1016/j.jcat.2017.10.010

    27. [27]

      (27) Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K.-S. J. Am. Chem. Soc. 2020, 142, 21538. doi: 10.1021/jacs.0c10924

    28. [28]

      (28) Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K.-S. ACS Catal. 2021, 11, 15110. doi: 10.1021/acscatal.1c04163

    29. [29]

      (29) Franceschini, F.; Taurino, I. J. P. I. M. Phys. Med. 2022, 100054. doi: 10.1016/j.phmed.2022.100054

    30. [30]

      (30) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335. doi: 10.1038/s41467-019-13375-z

    31. [31]

      (31) Wu, J.; Liu, X.; Hao, Y.; Wang, S.; Wang, R.; Du, W.; Cha, S.; Ma, X. Y.; Yang, X.; Gong, M. Angew. Chem. Int. Ed. 2023, 62, e202216083. doi: 10.1002/anie.202216083

    32. [32]

      (32) Sun, S.; Sun, L.; Xi, S.; Du, Y.; Prathap, M. A.; Wang, Z.; Zhang, Q.; Fisher, A.; Xu, Z. J. Electrochim. Acta 2017, 228, 183. doi: 10.1016/j.electacta.2017.01.086

    33. [33]

      (33) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. ACS Catal. 2020, 10, 6741. doi: 10.1021/acscatal.0c01498

    34. [34]

      (34) Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464. doi: 10.1002/anie.202107510

    35. [35]

      (35) Kruyer, N. S.; Peralta-Yahya, P. Curr. Opin. Biotechnol. 2017, 45, 136. doi: 10.1016/j.copbio.2017.03.006

    36. [36]

      (36) Yan, W.; Zhang, G.; Wang, J.; Liu, M.; Sun, Y.; Zhou, Z.; Zhang, W.; Zhang, S.; Xu, X.; Shen, J.; et al. Front. Chem. 2020, 8, 185. doi: 10.3389/fchem.2020.00185

    37. [37]

      (37) Yang, J.; Liu, J.; Neumann, H.; Franke, R.; Jackstell, R.; Beller, M. Science 2019, 366, 1514. doi: 10.1126/science.aaz1293

    38. [38]

      (38) Rios, J.; Lebeau, J.; Yang, T.; Li, S.; Lynch, M. D. Green. Chem. 2021, 23, 3172. doi: 10.1039/d1gc00638j

    39. [39]

      (39) Schaub, T. Science 2019, 366, 1447. doi: 10.1126/science.aaz6459

    40. [40]

      (40) Van De Vyver, S.; Román-Leshkov, Y. Catal. Sci. Technol. 2013, 3, 1465. doi: 10.1039/c3cy20728e

    41. [41]

      (41) Skoog, E.; Shin, J. H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biotechnol. Adv. 2018, 36, 2248. doi: 10.1016/j.biotechadv.2018.10.012

    42. [42]

      (42) Wang, R.; Kang, Y.; Wu, J.; Jiang, T.; Wang, Y.; Gu, L.; Li, Y.; Yang, X.; Liu, Z.; Gong, M. Angew. Chem. Int. Ed. 2022, 61, e202214977. doi: 10.1002/anie.202214977

    43. [43]

      (43) Chaenko, N.; Kornienko, G.; Sokolenko, V.; Kornienko, B. Russ. J. Appl. Chem. 2014, 87, 444. doi: 10.1134/s1070427214040089

    44. [44]

      (44) Rauen, A. L.; Weinelt, F.; Waldvogel, S. R. Green Chem. 2020, 22, 5956. doi: 10.1039/d0gc02210a

    45. [45]

      (45) Zhao, H.; Qu, X.; Qin, M.; Yang, W. J. Solid State Electrochem. 2016, 20, 2773. doi: 10.1007/s10008-016-3286-4

    46. [46]

      (46) Li, Z.; Li, X.; Zhou, H.; Xu, Y.; Xu, S. M.; Ren, Y.; Yan, Y.; Yang, J.; Ji, K.; Li, L.; et al. Nat. Commun. 2022, 13, 5009. doi: 10.1038/s41467-022-32769-0

    47. [47]

      (47) Lyalin, B.; Petrosyan, V. Russ. Chem. Bull. 2009, 58, 2426. doi: 10.1007/s11172-009-0339-1

    48. [48]

      (48) Hasanzadeh, M.; Karim-Nezhad, G.; Mahjani, M. G.; Jafarian, M.; Shadjou, N.; Khalilzadeh, B.; Saghatforoush, L. A. Catal. Commun. 2008, 10, 295. doi: 10.1016/j.catcom.2008.09.010

    49. [49]

      (49) Collinson, S.; Thielemans, W. Coord. Chem. Rev. 2010, 254, 1854. doi: 10.1016/j.ccr.2010.04.007

    50. [50]

      (50) Vennestrøm, P.; Osmundsen, C. M.; Christensen, C.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502. doi: 10.1002/anie.201102117

    51. [51]

      (51) Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. S. Science 2016, 354, 329. doi: 10.1126/science.aaf7810

    52. [52]

      (52) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2014, 515, 249. doi: 10.1038/nature13867

    53. [53]

      (53) Jiang, L.; Sheng, L.; Fan, Z. Sci. China Mater. 2018, 61, 133. doi: 10.1007/s40843-017-9169-4

    54. [54]

      (54) Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49, 5510. doi: 10.1039/d0cs00134a

    55. [55]

      (55) Tian, H.; Fu, X.; Zheng, M.; Wang, Y.; Li, Y.; Xiang, A.; Zhong, W.-H. Nano Res. 2018, 11, 4265. doi: 10.1007/s12274-018-2013-0

    56. [56]

      (56) Constant, S.; Wienk, H. L.; Frissen, A. E.; De Peinder, P.; Boelens, R.; Van Es, D. S.; Grisel, R. J.; Weckhuysen, B. M.; Huijgen, W. J.; Gosselink, R. J. Green Chem. 2016, 18, 2651. doi: 10.1039/C5GC03043A

    57. [57]

      (57) Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, B. Chem. Rev. 2018, 118, 614. doi: 10.1021/acs.chemrev.7b00588

    58. [58]

      (58) Bosque, I.; Magallanes, G.; Rigoulet, M.; KäRkäS, M. D.; Stephenson, C. R. ACS Cent. Sci. 2017, 3, 621. doi: 10.1021/acscentsci.7b00140

    59. [59]

      (59) Han, S.; Wang, C.; Wang, Y.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2021, 133, 4524. doi: 10.1002/anie.202014017

    60. [60]

      (60) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 6018. doi: 10.1002/anie.201712732

    61. [61]

      (61) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. doi: 10.1021/acs.accounts.9b00512

    62. [62]

      (62) Xu, C.; Arancon, R. a. D.; Labidi, J.; Luque, R. Chem. Soc. Rev. 2014, 43, 7485. doi: 10.1039/c4cs00235k

    63. [63]

      (63) Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2010, 132, 12554. doi: 10.1021/ja109016b

    64. [64]

      (64) Wu, A.; Patrick, B. O.; Chung, E.; James, B. R. Dalton Trans. 2012, 41, 11093. doi: 10.1039/C2DT31065A

    65. [65]

      (65) Norman, C. Science 2011, 332, 1263. doi: 10.1126/science.332.6035.1263-c

    66. [66]

      (66) Lahive, C. W.; Deuss, P. J.; Lancefield, C. S.; Sun, Z.; Cordes, D. B.; Young, C. M.; Tran, F.; Slawin, A. M.; De Vries, J. G.; Kamer, P. C.; et al. J. Am. Chem. Soc. 2016, 138, 8900. doi: 10.1021/jacs.6b04144

    67. [67]

      (67) Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. ACS Catal. 2017, 7, 4571. doi: 10.1021/acscatal.7b01043

    68. [68]

      (68) Luo, N.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. ACS Catal. 2016, 6, 7716. doi: 10.1021/acscatal.6b02212

    69. [69]

      (69) Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. Angew. Chem. Int. Ed. 2015, 127, 260. doi: 10.1002/anie.201409408

    70. [70]

      (70) Sedai, B.; Baker, R. T. Adv. Synth. Catal. 2014, 356, 3563. doi: 10.1002/adsc.201400463

    71. [71]

      (71) Tran, F.; Lancefield, C.; Kamer, P.; Lebl, T.; Westwood, N. Green Chem. 2015, 17, 244. doi: 10.1039/c4gc01012d

    72. [72]

      (72) Hanson, S. K.; Wu, R.; Silks, L. A. P. Angew. Chem. Int. Ed. 2012, 124, 3466. doi: 10.1002/anie.201107020

    73. [73]

      (73) Cho, D. W.; Parthasarathi, R.; Pimentel, A. S.; Maestas, G. D.; Park, H. J.; Yoon, U. C.; Dunaway-Mariano, D.; Gnanakaran, S.; Langan, P.; Mariano, P. S. J. Org. Chem. 2010, 75, 6549. doi: 10.1021/jo1012509

    74. [74]

      (74) Lim, S. H.; Nahm, K.; Ra, C. S.; Cho, D. W.; Yoon, U. C.; Latham, J. A.; Dunaway-Mariano, D.; Mariano, P. S. J. Org. Chem. 2013, 78, 9431. doi: 10.1021/jo401680z

    75. [75]

      (75) Hanson, S. K.; Baker, R. T. Acc. Chem. Res. 2015, 48, 2037. doi: 10.1021/acs.accounts.5b00104

    76. [76]

      (76) Parthasarathi, R.; Romero, R. A.; Redondo, A.; Gnanakaran, S. J. Phys. Chem. Lett. 2011, 2, 2660. doi: 10.1021/jz201201q

    77. [77]

      (77) Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.; Paton, R. S.; Beckham, G. T. J. Phys. Chem. Lett. 2011, 2, 2846. doi: 10.1021/jz201182w

    78. [78]

      (78) Kleine, T.; Buendia, J.; Bolm, C. Green Chem. 2013, 15, 160. doi: 10.1039/c2gc36456e

    79. [79]

      (79) Cui, T.; Ma, L.; Wang, S.; Ye, C.; Liang, X.; Zhang, Z.; Meng, G.; Zheng, L.; Hu, H. S.; Zhang, J.; et al. J. Am. Chem. Soc. 2021, 143, 9429. doi: 10.1021/jacs.1c02328

    80. [80]

      (80) Yan, K.; Zhang, Y.; Tu, M.; Sun, Y. Energy Fuels 2020, 34, 12703. doi: 10.1021/acs.energyfuels.0c02284

    81. [81]

      (81) Lange, J. P.; Van Der Heide, E.; Van Buijtenen, J.; Price, R. ChemSusChem 2012, 5, 150. doi: 10.1002/cssc.201100648

    82. [82]

      (82) Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Energy Environ. Sci. 2016, 9, 1144. doi: 10.1039/C5EE02666K

    83. [83]

      (83) Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T. ACS Sustain. Chem. Eng. 2015, 3, 2591. doi: 10.1021/acssuschemeng.5b00473

    84. [84]

      (84) Ye, W.; Yang, Y.; Fang, X.; Arif, M.; Chen, X.; Yan, D. ACS Sustain. Chem Eng. 2019, 7, 18085. doi: 10.1021/acssuschemeng.9b05126

    85. [85]

      (85) Li, X.; Ho, B.; Lim, D. S.; Zhang, Y. Green Chem. 2017, 19, 914. doi: 10.1039/C6GC03020C

    86. [86]

      (86) Wu, H.; Song, J.; Liu, H.; Xie, Z.; Xie, C.; Hu, Y.; Huang, X.; Hua, M.; Han, B. Chem. Sci. 2019, 10, 4692. doi: 10.1039/c9sc00322c

    87. [87]

      (87) Wojcieszak, R.; Santarelli, F.; Paul, S.; Dumeignil, F.; Cavani, F.; Gonçalves, R. V. Sustain. Chem. Proc. 2015, 3, 1. doi: 10.1186/s40508-015-0034-5/

    88. [88]

      (88) Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Chem. Rev. 1988, 88, 55. doi: 10.1021/cr00083a003

    89. [89]

      (89) Li, X.; Ko, J.; Zhang, Y. ChemSusChem 2018, 11, 612. doi: 10.1002/cssc.201701866

    90. [90]

      (90) Murthy, M.; Rajamani, K. Chem. Eng. Sci. 1974, 29, 601. doi: 10.1016/0009-2509(74)80071-0

    91. [91]

      (91) Lan, J.; Chen, Z.; Lin, J.; Yin, G. Green Chem. 2014, 16, 4351. doi: 10.1039/C4GC00829D

    92. [92]

      (92) Guo, H.; Yin, G. J. Phys. Chem. C 2011, 115, 17516. doi: 10.1021/jp2054712

    93. [93]

      (93) Shi, S.; Guo, H.; Yin, G. Catal. Commun. 2011, 12, 731. doi: 10.1016/j.catcom.2010.12.033

    94. [94]

      (94) Li, X.; Lan, X.; Wang, T. Catal. Today 2016, 276, 97. doi: 10.1016/j.cattod.2015.11.036

    95. [95]

      (95) Román, A. M.; Hasse, J. C.; Medlin, J. W.; Holewinski, A. ACS Catal. 2019, 9, 10305. doi: 10.1021/acscatal.9b02656

    96. [96]

      (96) Kubota, S. R.; Choi, K.-S. ACS Sustain. Chem. Eng. 2018, 6, 9596. doi: 10.1021/acssuschemeng.8b02698

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(9)
  • Abstract views(497)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return