Citation: Yajie Li, Bin Chen, Yiping Wang, Hui Xing, Wei Zhao, Geng Zhang, Siqi Shi. Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230505. doi: 10.3866/PKU.WHXB202305053
-
Lithium metal is a promising anode candidate for high-energy-density secondary batteries due to its high theoretical capacity and low electrochemical potential, while the uncontrolled dendrite growth causing poor cycling performance and safety concerns poses serious challenges for the practical application of lithium metal batteries. During the electrodeposition process, the lithium-ion (Li+) diffusion process is directly related to the electrode/electrolyte interfacial Li+ concentration gradient as well as the dendritic morphology. Regulating the anisotropic Li+ diffusion property is a convenient way to reshape its transfer behavior without introducing any external fields (e.g., temperature field, magnetic field, acoustic field, etc.) or increasing the weight of batteries. Despite the large amount of experimental and theoretical work on the effect of the anisotropic Li+ diffusion behavior on the dendritic morphology, some open questions remain to be deliberated, e.g., correlating the dynamic evolution of dendrite growth with the anisotropic Li+ diffusion induced by the electrolyte property, electric potential, and separator structure. In this paper, an electrochemical phase-field model is applied to explore the influences of electrolyte inherent anisotropic Li+ diffusion, electric potential-induced anisotropic Li+ diffusion, and separator-structure-induced anisotropic Li+ migration on dendrite growth via a homemade MATLAB code. Instead of a fixed numerical value, the modified Li+ diffusivity in the electrolyte (DL) is expressed as a second-order tensor by decomposing into two components along the x (Dxx) and y (Dyy) directions, which is not only able to explore the electrolyte inherent anisotropic Li+ diffusion but also easy to describe the electric potential-induced fluctuations of DL and the corresponding Li+ concentration distribution. Predicted results indicate that with the increase of Dyy: Dxx, the interfacial Li+concentration gradient is alleviated due to the accelerated longitudinal Li+ replenishment and decelerated transversal “entrainment” phenomenon, thus decreasing the driving force of dendrite growth. Besides, the electric potential-induced interfacial Li+ fast diffusion layer can also reduce the electric potential gradients surrounding the dendrite tips and then uniform the dendrite morphologies. Surprisingly, separators with higher matrix tilt angles are demonstrated to achieve effective anisotropic Li+ diffusion in electrolyte, which can not only reduce the dendrite-growth velocity, but also extend the dendrite-growth pathway and prolong the battery short circuit time. Following this, electrolyte with the Dyy: Dxx = 10: 1 and separator with the matrix tilt angle of arctan (0.5) are evaluated as promising materials for lithium metal batteries. This study provides a rational guidance for designing electrolytes or separators with dendrite-inhibiting capability.
-
-
[1]
(1) Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2 (11), 2434. doi:10.1016/j.joule.2018.08.018
-
[2]
(2) Armand, M.; Tarascon, J.-M. Nature 2008, 451 (7179), 652. doi:10.1038/451652a
-
[3]
(3) Tarascon, J.-M.; Armand, M. Nature 2001, 414 (6861), 359. doi:10.1038/35104644
-
[4]
-
[5]
(5) Chen, X.; Yao, Y.; Yan, C.; Zhang, R.; Cheng, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59 (20), 7743. doi:10.1002/anie.202000375
-
[6]
(6) Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q. Angew. Chem. 2017, 129 (27), 7872. doi:10.1002/ange.201702099
-
[7]
(7) Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. J. Electroanal. Chem. 2011, 661 (1), 84. doi:10.1016/j.jelechem.2011.06.035
-
[8]
(8) Tan, J.; Tartakovsky, A. M.; Ferris, K.; Ryan, E. M. J. Electrochem. Soc. 2016, 163 (2), A318. doi:10.1149/2.0951602jes
-
[9]
(9) Gopalakrishnan, D.; Alkatie, S.; Cannon, A.; Rajendran, S.; Thangavel, N. K.; Bhagirath, N.; Ryan, E. M.; Arava, L. M. R. Sustain. Energy Fuels 2021, 5 (5), 1488. doi:10.1039/D0SE01547D
-
[10]
(10) Li, Y.; Sha, L.; Zhang, G.; Chen, B.; Zhao, W.; Wang, Y.; Shi, S. Chin. Chem. Lett. 2023, 34 (2), 107993. doi:10.1016/j.cclet.2022.107993
-
[11]
(11) Hong, Z.; Viswanathan, V. ACS Energy Lett. 2019, 4 (5), 1012. doi:10.1021/acsenergylett.9b00433
-
[12]
(12) Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359 (6383), 1513. doi:10.1126/science.aap8787
-
[13]
(13) Martin, W.; Tian, Y.; Xiao, J. J. Electrochem. Soc. 2021, 168 (6), 060513. doi:10.1149/1945-7111/ac0647
-
[14]
(14) Cogswell, D. A. Phys. Rev. E 2015, 92 (1), 011301. doi:10.1103/PhysRevE.92.011301
-
[15]
(15) Wang, K.; Xiao, Y.; Pei, P.; Liu, X.; Wang, Y. J. Electrochem. Soc. 2019, 166 (10), D389. doi:10.1149/2.0541910jes
-
[16]
(16) Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4 (1), 1481. doi:10.1038/ncomms2513
-
[17]
(17) Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441. doi:10.1021/jacs.8b13297
-
[18]
(18) Dong, J.; Dai, H.; Wang, C.; Lai, C. Solid State Ion. 2019, 341, 115033. doi:10.1016/j.ssi.2019.115033
-
[19]
(19) Chen, Y.; Dou, X.; Wang, K.; Han, Y. Green Energy Environ. 2022, 7 (5), 965. doi:10.1016/j.gee.2020.12.014
-
[20]
(20) Huang, Y.; Wu, X.; Nie, L.; Chen, S.; Sun, Z.; He, Y.; Liu, W. Solid State Ion. 2020, 345, 115171. doi:10.1016/j.ssi.2019.115171
-
[21]
(21) Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G.; et al. Adv. Energy Mater. 2019, 9 (20), 1900260. doi:10.1002/aenm.201900260
-
[22]
(22) Liang, P.; Li, Q.; Chen, L.; Tang, Z.; Li, Z.; Wang, Y.; Tang, Y.; Han, C.; Lan, Z.; Zhi, C.; et al. J. Mater. Chem. A 2022, 10 (22), 11971. doi:10.1039/D2TA02077G
-
[23]
(23) Huang, A.; Liu, H.; Manor, O.; Liu, P.; Friend, J. Adv. Mater. 2020, 32 (14), 1907516. doi:10.1002/adma.201907516
-
[24]
(24) Zhang, J.; Zhou, Z.; Wang, Y.; Chen, Q.; Hou, G.; Tang, Y. Nano Energy 2022, 102, 107655. doi:10.1016/j.nanoen.2022.107655
-
[25]
(25) Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3 (7), e1701246. doi:10.1126/sciadv.1701246
-
[26]
-
[27]
(27) Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8 (3), 1545. doi:10.1039/C5NR06888F
-
[28]
(28) Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L. A.; Greenbaum, S. G.; Balsara, N. P. J. Phys. Chem. B 2018, 122 (4), 1537. doi:10.1021/acs.jpcb.7b11371
-
[29]
(29) Li, W.; Tchelepi, H. A.; Ju, Y.; Tartakovsky, D. M. J. Electrochem. Soc. 2022, 169 (6), 060536. doi:10.1149/1945-7111/ac7978
-
[30]
(30) Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L.-Q. J. Power Sources 2015, 300, 376. doi:10.1016/j.jpowsour.2015.09.055
-
[31]
(31) Liang, L.; Chen, L.-Q. Appl. Phys. Lett. 2014, 105 (26), 263903. doi:10.1063/1.4905341
-
[32]
(32) Yurkiv, V.; Foroozan, T.; Ramasubramanian, A.; Shahbazian-Yassar, R.; Mashayek, F. Electrochim. Acta 2018, 265, 609. doi:10.1016/j.electacta.2018.01.212
-
[33]
(33) Ahmad, Z.; Hong, Z.; Viswanathan, V. Proc. Natl. Acad. Sci. 2020, 117 (43), 26672. doi:10.1073/pnas.2008841117
-
[34]
(34) Shen, X.; Zhang, R.; Shi, P.; Chen, X.; Zhang, Q. Adv. Energy Mater. 2021, 11 (10), 2003416. doi:10.1002/aenm.202003416
-
[35]
(35) Gao, L. T.; Huang, P.; Guo, Z.-S. ACS Appl. Mater. Interfaces 2022, 14 (37), 41957. doi:10.1021/acsami.2c09551
-
[36]
-
[37]
(37) Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Adv. Mater. 2004, 16 (11), 865. doi:10.1002/adma.200306196
-
[38]
(38) Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; De Leeuw, D. M.; Tomović, Ž.; Wu, J.; et al. J. Am. Chem. Soc. 2005, 127 (46), 16233. doi:10.1021/ja054694t
-
[39]
(39) Hong, Z.; Viswanathan, V. ACS Energy Lett. 2018, 3 (7), 1737. doi:10.1021/acsenergylett.8b01009
-
[40]
(40) Ren, Y.; Zhou, Y.; Cao, Y. J. Phys. Chem. C 2020, 124 (23), 12195. doi:10.1021/acs.jpcc.0c01116
-
[41]
(41) Li, Y.; Zhang, G.; Chen, B.; Zhao, W.; Sha, L.; Wang, D.; Yu, J.; Shi, S. Chin. Chem. Lett. 2022, 33 (6), 3287. doi:10.1016/j.cclet.2022.03.065
-
[42]
(42) Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1 (3), 16010. doi:10.1038/nenergy.2016.10
-
[43]
-
[44]
(44) Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135 (11), 4450. doi:10.1021/ja312241y
-
[45]
(45) Ravikumar, B.; Mynam, M.; Rai, B. J. Mol. Liq. 2020, 300, 112252. doi:10.1016/j.molliq.2019.112252
-
[46]
(46) Liu, M.; Chimtali, P. J.; Huang, X.; Zhang, R. Phys. Chem. Chem. Phys. 2019, 21 (24), 13186. doi:10.1039/C9CP00561G
-
[47]
(47) Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Adv. Funct. Mater. 2015, 25 (8), 1206. doi:10.1002/adfm.201402509
-
[48]
(48) Sasi, R.; Jinesh, K. B.; Devaki, S. J. ChemistrySelect 2017, 2 (1), 315. doi:10.1002/slct.201601715
-
[1]
-
-
[1]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[4]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[7]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[8]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[9]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[10]
Shuhui Li , Jing Wang , Haitao Tang , Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061
-
[11]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[12]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[13]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[14]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[15]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[16]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[17]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[18]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[19]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[20]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(349)
- HTML views(23)