Citation: Haitao Wang,  Lianglang Yu,  Jizhou Jiang,  Arramel,  Jing Zou. 硫取代氮增强g-C3N4光催化产氢性能[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230504. doi: 10.3866/PKU.WHXB202305047 shu

硫取代氮增强g-C3N4光催化产氢性能

  • Received Date: 26 May 2023
    Revised Date: 21 June 2023
    Accepted Date: 21 June 2023

    Fund Project: This work is supported by the National Natural Science Foundation of China (62004143), the Key R&D Program of Hubei Province, China (2022BAA084), the Natural Science Foundation of Hubei Province, China (2021CFB133), the National Key R&D Program of China (2022YFC3902703), the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, China (LCX2021003) and the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, China (2021JYBKF05).

  • 利用取之不尽的太阳能资源进行光催化水裂解制氢是缓解全球能源危机、实现碳中和战略的一项有前景的技术。石墨相氮化碳(g-C3N4)因成本低且稳定性高在光催化产氢领域备受关注。然而,纯g-C3N4存在表面积小、电子转移慢、光生载流子复合快等缺陷,产氢性能通常不佳。本研究通过直接热解硫酸铵和三聚氰胺混合物,成功实现硫物种对g-C3N4氮位点的原位取代,开发出一种高效的硫掺杂g-C3N4 (S-g-CN)光催化剂。系列结构和光谱表征证实硫的成功掺杂。密度泛函理论的第一性原理计算表明S活性位对氢的吸附吉布斯自由能近乎为零(~0.26 eV),揭示S掺杂在优化H活性中间体吸附和解吸过程中起着重要作用。透射电子显微镜和原子力显微镜测试结果表明,S-g-CN具有超薄的纳米片状结构,其片层厚度约为2.5 nm。随后的氮气吸脱附等温线和光电化学性质测试结果表明,S掺杂不仅可显著增大g-C3N4比表面积,而且还能有效提高其光生电子-空穴对的转移、分离和氧化还原能力。得益于材料良好的结构特性,S-g-CN的光催化产氢速率高达4923 μmol·g-1·h-1,是原始g-C3N4的28倍,超越诸多最近报道的其它S掺杂g-C3N4光催化剂。而且,S-g-CN的表观量子效率高达3.64%。本研究除了开发一种高效的光催化剂,还将为高性能g-C3N4基催化剂的设计提供有益借鉴。
  • 加载中
    1. [1]

      (1) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    2. [2]

    3. [3]

      (3) Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X. Green Chem. 2023, 25, 32. doi: 10.1039/D2GC03160D

    4. [4]

      (4) Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Nat. Commun. 2021, 12, 4112.doi: 10.21203/rs.3.rs-208751/v1

    5. [5]

      (5) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    6. [6]

      (6) Liu, T.; Li, Y. F.; Sun, H. J.; Zhang, M.; Xia, Z. L.; Yang, Q. Chin. J. Struct. Chem. 2022, 41, 2206055. doi: 10.14102/j.cnki.0254-5861.2022-0152

    7. [7]

    8. [8]

      (8) Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci. Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030

    9. [9]

      (9) Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y.; Zhang, P.; Li, X. Sci. China Mater. 2022, 63, 2153. doi: 10.1007/s40843-020-1456-x

    10. [10]

      (10) Zhang, S.; Dong, H.; An, C.; Li, Z.; Xu, D.; Xu, K.; Wu, Z.; Shen, J.; Chen, X.; Zhang, S. J. Mater. Sci. Technol. 2021, 75, 59. doi: 10.1016/j.jmst.2020.10.030

    11. [11]

      (11) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu, P.; Hsu, J. P. Nano Res. 2023, 16, 127. doi: 10.1007/s12274-022-4799-z

    12. [12]

    13. [13]

      (13) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater. Chem. A 2021, 9, 24195. doi: 10.1039/d1ta07332j

    14. [14]

      (14) Jiang, J.; Xiong, Z.; Wang, H.; Xiang, K.; Wu, P.; Zou, J. Sci. China Technol. Sc. 2022, 65, 3020. doi: 10.1007/s11431-022-2192-6

    15. [15]

      (15) Tao, S. R.; Wan, S. J.; Huang, Q. Y.; Li, C. M.; Yu, J. G.; Cao, S. W. Chin. J. Struct. Chem. 2022, 41, 2206048. doi: 10.14102/j.cnki.0254-5861.2022-0068

    16. [16]

      (16) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8

    17. [17]

      (17) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7, 2100498. doi: 10.1002/adsu.202100498

    18. [18]

      (18) Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.; Duan, Y.; Ho, W.; Dong, F. Nano Energy 2023, 105, 108032. doi: 10.1016/j.nanoen.2022.108032

    19. [19]

      (19) Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J. P.; Jiang, J. J. Alloy. Compd. 2022, 911, 165020. doi: 10.1016/j.jallcom.2022.165020

    20. [20]

      (20) Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.; Zhang, P.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2201025. doi: 10.14102/j.cnki.0254-5861.2021-0039

    21. [21]

      (21) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011

    22. [22]

    23. [23]

      (23) Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Guo, X.; Zhang, M.; Li, R.; Huang, Y. J. Mater. Sci. Technol. 2021, 95, 127. doi: 10.1016/j.jmst.2021.03.025

    24. [24]

      (24) Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/s1872-2067(20)63634-8

    25. [25]

      (25) Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498

    26. [26]

      (26) Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15. doi: 10.1016/j.jmst.2021.12.018

    27. [27]

      (27) Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Appl. Catal. B Environ. 2018, 238, 592. doi: 10.1016/j.apcatb.2018.07.023

    28. [28]

      (28) Zhou, Y.; Lv, W.; Zhu, B.; Tong, F.; Pan, J.; Bai, J.; Zhou, Q.; Qin, H. ACS Sustain. Chem. Eng. 2019, 7, 5801. doi: 10.1021/acssuschemeng.8b05374

    29. [29]

      (29) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4

    30. [30]

      (30) Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B. Y. Adv. Funct. Mater. 2023, 33, 2208358. doi: 10.1002/adfm.202208358

    31. [31]

      (31) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang, K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977. doi: 10.1007/s12274-022-4276-8

    32. [32]

    33. [33]

      (33) Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Carbon 2018, 130, 652. doi: 10.1016/j.carbon.2018.01.008

    34. [34]

      (34) Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539. doi: 10.1016/j.apcatb.2020.119539

    35. [35]

      (35) Deng, Y.; Zhou, Z.; Zeng, H.; Tang, R.; Li, L.; Wang, J.; Feng, C.; Gong, D.; Tang, L.; Huang, Y. Appl. Catal. B Environ. 2022, 320, 121942. doi: 10.1016/j.apcatb.2022.121942

    36. [36]

      (36) Wang, H.; Qiu, X.; Peng, Z.; Wang, W.; Wang, J.; Zhang, T.; Jiang, L.; Liu, H. J. Colloid Interface Sci. 2020, 561, 829. doi: 10.1016/j.jcis.2019.11.065

    37. [37]

      (37) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    38. [38]

      (38) Jiang, J.; Lei, O. Y.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Carbon 2014, 80, 213. doi: 10.1016/j.carbon.2014.08.059

    39. [39]

      (39) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138. doi: 10.1039/c9nr00168a

    40. [40]

      (40) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zengi, F.; et al. Chin. J. Struct. Chem. 2022, 41, 2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103

    41. [41]

      (41) Wu, M.; Yan, J.; Tang, X.; Zhao, M.; Jiang, Q. ChemSusChem 2014, 7, 2654. doi: 10.1002/cssc.201402180

    42. [42]

      (42) Lin, Y. R.; Dizon, G. V. C.; Yamada, K.; Liu, C. Y.; Venault, A.; Lin, H. Y.; Yoshida, M.; Hu, C. J. Colloid Interface Sci. 2020, 567, 202. doi: 10.1016/j.jcis.2020.02.017

    43. [43]

      (43) Wang, H.; Qiu, X.; Wang, W.; Jiang, L.; Liu, H. Front. Chem. 2019, 7, 855. doi: 10.3389/fchem.2019.00855

    44. [44]

      (44) Bai, J.; Zhou, P.; Xu, P.; Deng, Y.; Zhou, Q. Ceram. Int. 2021, 47, 4043. doi: 10.1016/j.ceramint.2020.09.275

    45. [45]

      (45) Jiao, Y.; Liu, M.; Qin, J.; Li, Y.; Wang, J.; He, Z.; Li, Z. J. Colloid Interface Sci. 2022, 608, 1432. doi: 10.1016/j.jcis.2021.10.084

    46. [46]

      (46) Fei, T.; Qin, C.; Zhang, Y.; Dong, G.; Wang, Y.; Zhou, Y. Int. J. Hydrog. Energy 2021, 46, 20481. doi: 10.1016/j.ijhydene.2021.03.148

    47. [47]

      (47) Li, J.; Liu, X.; Liu, C.; Che, H.; Li, C. J. Taiwan. Inst. Chem. E 2020, 117, 93. doi: 10.1016/j.jtice.2020.12.001

    48. [48]

      (48) Zhang, T.; Cai, X.; Lin, X.; Jiang, Z.; Jin, H.; Huang, Z.; Gan, T.; Hu, H.; Zhang, Y. Sep. Purif. Technol. 2023, 314, 123618. doi: 10.1016/j.seppur.2023.123618

    49. [49]

      (49) Niu, L.; Du, J.; Tian, X.; Jiang, D.; Gu, L.; Yuan, Y. Mater. Lett. 2021, 300, 130120. doi: 10.1016/j.matlet.2021.130120

    50. [50]

      (50) Fang, K.; Chen, Z.; Wei, Y.; Fang, S.; Dong, Z.; Zhang, Y.; Li, W.; Wang, L. J. Alloy. Compd. 2022, 925, 166257. doi: 10.1016/j.jallcom.2022.166257

    51. [51]

      (51) Long, D.; Wang, L.; Cai, H.; Rao, X.; Zhang, Y. Catal. Lett. 2020, 150, 2487. doi: 10.1007/s10562-020-03156-5

    52. [52]

      (52) Ahmad, K.; Khan, M. Q.; Alsalme, A.; Kim, H. Synth. Met. 2022, 288, 117100. doi: 10.1016/j.synthmet.2022.117100

    53. [53]

      (53) Zhou, P.; Meng, X.; Li, L.; Sun, T. J. Alloy. Compd. 2020, 827, 154259. doi: 10.1016/j.jallcom.2020.154259

    54. [54]

      (54) Feng, C.; Tang, L.; Deng, Y, Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539. doi: 10.1016/j.apcatb.2020.119539

    55. [55]

      (55) Zou, J.; Zou, Y.; Wang, H.; Wang, W.; Wu, P.; Arramel; Jiang, J.; Li, X. Chin. Chem. Lett. 2023, 34, 107378. doi: 10.1016/j.cclet.2022.03.101

    56. [56]

      (56) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046

    57. [57]

      (57) Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; et al. J. Am. Chem. Soc. 2017, 139, 3021. doi: 10.1021/jacs.6b11878

    58. [58]

      (58) Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.; Yu, J.; Chen, X. Adv. Mater. 2019, 31, 1806596. doi: 10.1002/adma.201806596

    59. [59]

      (59) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35, 2209141. doi: 10.1002/adma.202209141

    60. [60]

      (60) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012

    61. [61]

      (61) Wang, H.; Jiang, J.; Yu, L.; Peng, J.; Song, Z.; Xiong, Z.; Li, N.; Xiang, K.; Zou, J.; Hsu, J.-P.; et al. Small 2023, doi: 10.1002/smll.202301116

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(1)
  • Abstract views(83)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return