Citation: Xudong Lv,  Tao Shao,  Junyan Liu,  Meng Ye,  Shengwei Liu. 电催化CO2还原耦合HCHO氧化反应系统促进污染物同步经济高效资源化转化[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230502. doi: 10.3866/PKU.WHXB202305028 shu

电催化CO2还原耦合HCHO氧化反应系统促进污染物同步经济高效资源化转化

  • Received Date: 15 May 2023
    Revised Date: 27 May 2023
    Accepted Date: 27 May 2023

    Fund Project: This project was supported by the National Natural Science Foundation of China (51872341), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program, China (2019TQ05L196) and the Science and Technology Planning Project of Guangdong Province, China (2021A1515010147).

  • 传统电化学CO2还原(CO2RR)系统中阳极发生的水氧化半反应(WOR)具有动力学缓慢、过电位大、能耗高等缺点,限制了CO2RR系统的经济效益和应用。因此,本研究引入MnO2阳极进行甲醛氧化半反应(FOR)以代替WOR,构建了一种新型CO2RR/FOR耦合系统。与传统的CO2RR/WOR系统相比,在相同的施加电势下,CO2RR/FOR耦合系统的CO2RR电流密度和CO2RR产物的生成速率通常更具有优势。此外,在CO2RR/FOR耦合系统中,在合适的施加电势下,HCHO可以选择性地转化为HCOOH。具体来说,两电极CO2RR/FOR耦合系统中,在3.5 V的槽电压下,近90%的HCHO可以被去除,且HCHO会选择性转化为HCOOH,其转化率约为48%。更重要的是,在不同的工作电流下,FOR所需的电势比WOR所需的电势要小。在-10 mA·cm-2时,CO2RR/FOR耦合系统能降低约210 mV的槽电压,并且其能耗比单独的CO2RR系统和FOR系统的能耗之和降低45.13%。值得注意的是,当使用商业多晶硅太阳能电池作为电源时,在CO2RR/FOR耦合系统中的CO2RR电流密度、CO2RR产物的生成速率和HCHO到HCOOH的选择性仍然可以实现相当的改善。目前的工作将进一步推动研究开发新型的CO2RR耦合系统,以经济有效地将CO2和有机污染物同时转化为有价值的化学品。
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      (6) Liang, Y.; Wu, X.; Liu, X.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2022, 304, 120978. doi: 10.1016/j.apcatb.2021.120978

    7. [7]

      (7) Ye, M.; Shao, T.; Liu, J.; Li, C.; Song, B.; Liu, S. Appl. Surf. Sci. 2023, 622, 156981. doi: 10.1016/j.apsusc.2023.156981

    8. [8]

      (8) Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Nano Today 2018, 21, 41. doi: 10.1016/j.nantod.2018.05.001

    9. [9]

      (9) Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503

    10. [10]

      (10) Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825. doi: 10.1016/j.cej.2021.128825

    11. [11]

      (11) Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282

    12. [12]

      (12) Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. Adv. Energy Mater. 2019, 9, 1803151. doi: 10.1002/aenm.201803151

    13. [13]

      (13) Yu, N.; Cao, W.; Huttula, M.; Kayser, Y.; Hoenicke, P.; Beckhoff, B.; Lai, F.; Dong, R.; Sun, H.; Geng, B. Appl. Catal. B: Environ. 2020, 261, 118193. doi: 10.1016/j.apcatb.2019.118193

    14. [14]

      (14) Llorente, M. J.; Nguyen, B. H.; Kubiak, C. P.; Moeller, K. D. J. Am. Chem. Soc. 2016, 138, 15110. doi: 10.1021/jacs.6b08667

    15. [15]

      (15) Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6

    16. [16]

      (16) Zhang, S.; Zhuo, Y.; Ezugwu, C. I.; Wang, C. C.; Li, C.; Liu, S. Environ. Sci. Technol. 2021, 55, 8341. doi: 10.1021/acs.est.1c01277

    17. [17]

      (17) Zhuo, Y.; Guo, X.; Cai, W.; Shao, T.; Xia, D.; Li, C.; Liu, S. Appl. Catal. B: Environ. 2023, 333, 122789. doi: 10.1016/j.apcatb.2023.122789

    18. [18]

      (18) Li, S.; Ezugwu, C. I.; Zhang, S.; Xiong, Y.; Liu, S. Appl. Surf. Sci. 2019, 487, 260. doi: 10.1016/j.apsusc.2019.05.083

    19. [19]

      (19) Ezugwu, C. I.; Zhang, S.; Li, S.; Shi, S.; Li, C.; Verpoort, F.; Yu, J.; Liu, S. Environ. Sci. Nano 2019, 6, 2931. doi: 10.1039/c9en00871c

    20. [20]

      (20) Silva, A. M. T.; Castelo-Branco, I. M.; Quinta-Ferreira, R. M.; Levec, J. Chem. Eng. Sci. 2003, 58, 963. doi: 10.1016/s0009-2509(02)00636-x

    21. [21]

      (21) Mei, X.; Guo, Z.; Liu, J.; Bi, S.; Li, P.; Wang, Y.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. Chem. Eng. J. 2019, 372, 673. doi: 10.1016/j.cej.2019.04.184

    22. [22]

      (22) Li, G.; Han, G.; Wang, L.; Cui, X.; Moehring, N. K.; Kidambi, P. R.; Jiang, D. E.; Sun, Y. Nat. Commun. 2023, 14, 525. doi: 10.1038/s41467-023-36142-7

    23. [23]

      (23) Liao, W.; Chen, Y.-W.; Liao, Y.-C.; Lin, X.-Y.; Yau, S.; Shyue, J.-J.; Wu, S.-Y.; Chen, H.-T. Electrochim. Acta 2020, 333, 135542. doi: 10.1016/j.electacta.2019.135542

    24. [24]

      (24) Jin, Z.; Li, P.; Liu, G.; Zheng, B.; Yuan, H.; Xiao, D. J. Mater. Chem. A 2013, 1, 14736. doi: 10.1039/c3ta13277c

    25. [25]

      (25) Fukunaga, M. T.; Guimarães, J. R.; Bertazzoli, R. Chem. Eng. J. 2008, 136, 236. doi: 10.1016/j.cej.2007.04.006

    26. [26]

      (26) He, D.; Wang, G.; Liu, G.; Bai, J.; Suo, H.; Zhao, C. J. Alloy. Compd. 2017, 699, 706. doi: 10.1016/j.jallcom.2016.12.398

    27. [27]

      (27) Babakhani, B.; Ivey, D. G. J. Power Sources 2011, 196, 10762. doi: 10.1016/j.jpowsour.2011.08.102

    28. [28]

      (28) Sun, M.; Fang, L. M.; Liu, J. Q.; Zhang, F.; Zhai, L. F. Chemosphere 2019, 234, 269. doi: 10.1016/j.chemosphere.2019.06.083

    29. [29]

      (29) Wang, Z.; Jia, H.; Liu, Z.; Peng, Z.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. J. Hazard. Mater. 2021, 413, 125285. doi: 10.1016/j.jhazmat.2021.125285

    30. [30]

      (30) Guan, S.; Huang, Q.; Ma, J.; Li, W.; Ogunbiyi, A. T.; Zhou, Z.; Chen, K.; Zhang, Q. Ind. Eng. Chem. Res. 2019, 59, 596. doi: 10.1021/acs.iecr.9b05191

    31. [31]

      (31) Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. ACS Catal. 2017, 7, 1749. doi: 10.1021/acscatal.6b03147

    32. [32]

      (32) Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K. Surf. Sci. 2016, 654, 56. doi: 10.1016/j.susc.2016.08.006

    33. [33]

      (33) Ren, D.; Fong, J.; Yeo, B. S. Nat. Commun. 2018, 9, 925. doi: 10.1038/s41467-018-03286-w

    34. [34]

      (34) Hu, X.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M.-M.; Welter, E.; Lamagni, P.; Buh, K. B.; Bremholm, M.; et al. ACS Catal. 2018, 8, 6255. doi: 10.1021/acscatal.8b01022

    35. [35]

      (35) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.1021/ja309317u

    36. [36]

      (36) Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060

    37. [37]

      (37) Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. Appl. Catal. B: Environ. 2017, 204, 147. doi: 10.1016/j.apcatb.2016.11.036

    38. [38]

      (38) Montoya, J. H.; Shi, C.; Chan, K.; Norskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722

    39. [39]

      (39) Jin, L.; Seifitokaldani, A. Catalysts 2020, 10, 481. doi: 10.3390/catal10050481

    40. [40]

      (40) Rong, S.; He, T.; Zhang, P. Appl. Catal. B: Environ. 2020, 267, 118375. doi: 10.1016/j.apcatb.2019.118375

    41. [41]

      (41) Hasanzadeh, M.; Khalilzadeh, B.; Shadjou, N.; Karim-Nezhad, G.; Saghatforoush, L.; Kazeman, I.; Abnosi, M. H. Electroanalysis 2010, 22, 168. doi: 10.1002/elan.200900294

    42. [42]

      (42) Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464-21472. doi: 10.1002/anie.202107510

    43. [43]

      (43) Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J.; Dismukes, G. C. ACS Catal. 2016, 6, 2089. doi: 10.1021/acscatal.6b00099

    44. [44]

      (44) Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Appl. Catal. B: Environ. 2020, 260, 118210. doi: 10.1016/j.apcatb.2019.118210

    45. [45]

      (45) Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551

    46. [46]

      (46) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

Metrics
  • PDF Downloads(1)
  • Abstract views(85)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return