Citation: Bizhu Shao,  Huijun Dong,  Yunnan Gong,  Jianhua Mei,  Fengshi Cai,  Jinbiao Liu,  Dichang Zhong,  Tongbu Lu. Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230502. doi: 10.3866/PKU.WHXB202305026 shu

Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows

  • Corresponding author: Yunnan Gong,  Jinbiao Liu,  Dichang Zhong, 
  • Received Date: 12 May 2023
    Revised Date: 8 June 2023
    Accepted Date: 8 June 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2022YFA1502902), National Natural Science Foundation of China (22271218, 22071182, 22001043, 21931007), and Natural Science Foundation of Tianjin City (20JCYBJC00380).

  • The electrocatalytic carbon dioxide (CO2) reduction has gained recognition as an outstanding approach for transforming CO2 into renewable energy products. To accomplish this reduction reaction, the development of efficient electrocatalysts is required. Nickel-based electrocatalysts have been extensively investigated for CO2 reduction; however, nickel nanoparticles (NiNPs) have demonstrated limited catalytic performance. In this study, NiNPs implanted in N-doped porous carbon (NiNPs-NC) were prepared by thermal treatment of nickel metal-organic framework, urea, and carbon black under an N2 atmosphere. The NiNPs-NC exhibited high catalytic performance for the electroreduction of CO2 to CO in both H-type and flow cells. In the H-type cell, the CO faradaic efficiencies (FEs) of NiNPs-NC exceeded 90% in the potential window from −0.67 to −1.07 V vs. reversible hydrogen electrode (RHE), reaching a maximum CO FE of approximately 100% at −0.87 V vs. RHE. In the flow cell, the CO selectivities of NiNPs-NC exceeded 95% in the potential window from −0.50 to −0.70 V vs. RHE. The fast charge transfer, as demonstrated by electrochemical impedance spectroscopy and Tafel slope, can be attributed to the high catalytic activity of NiNPs-NC. This study provides a simple method to develop highly efficient catalysts for electrocatalytic CO2 reduction.
  • 加载中
    1. [1]

      (1) Dowell, N. M.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/NCLIMATE3231

    2. [2]

      (2) Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Nature 2012, 484, 49. doi: 10.1038/nature10915

    3. [3]

      (3) Ding, M. L.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/c8cs00829a

    4. [4]

      (4) Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Chem. Res. 2022, 55, 2978. doi: 10.1021/acs.accounts.2c00326

    5. [5]

      (5) Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2023, 52, 1382. doi: 10.1039/d2cs00843b

    6. [6]

      (6) Lv, F.; Han, N.; Qiu, Y.; Liu, X. J.; Luo, J.; Li, Y. G. Coord. Chem. Rev. 2020, 422, 213435. doi: 10.1016/j.ccr.2020.213435

    7. [7]

      (7) Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. H. Nature 2019, 575, 639. doi: 10.1038/s41586-019-1760-8

    8. [8]

      (8) Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Chem. Soc. Rev. 2022, 51, 1234. doi: 10.1039/d1cs00893e

    9. [9]

      (9) Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J. Y.; Shao, M.; Wei, M. Angew. Chem. Int. Ed. 2021, 60, 7382. doi: 10.1002/ange.202014655

    10. [10]

      (10) Zhang, N.; Zheng, F. F.; Huang, B. L.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Adv. Mater. 2020, 32, 1906477. doi: 10.1002/adma.201906477

    11. [11]

    12. [12]

      (12) Gong, W.; Chen, Z. J.; Dong, J. Q.; Liu, Y.; Cui, Y. Chem. Rev. 2022, 122, 9078. doi: 10.1021/acs.chemrev.1c00740

    13. [13]

      (13) Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Chem. Soc. Rev. 2018, 47, 6267. doi: 10.1039/c8cs00268a

    14. [14]

      (14) Du, J.; Li, F.; Sun, L. C. Chem. Soc. Rev. 2021, 50, 2663. doi: 10.1039/d0cs01191f

    15. [15]

    16. [16]

      (16) Zou, L. L.; Hou, C.-C.; Liu, Z.; Pang, H.; Xu, Q. J. Am. Chem. Soc. 2018, 140, 15393. doi: 10.1021/jacs.8b09092

    17. [17]

      (17) Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Adv. Mater. 2021, 33, 2007442. doi: 10.1002/adma.202007442

    18. [18]

      (18) Bigdeli, F.; Lollar, C. T.; Morsali, A.; Zhou, H.-C. Angew. Chem. Int. Ed. 2020, 59, 4652. doi: 10.1002/anie.201900666

    19. [19]

      (19) Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S.-H.; Jiang, H.-L. Nat. Commun. 2020, 11, 2831. doi: 10.1038/s41467-020-16715-6

    20. [20]

      (20) Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X.; et al. Angew. Chem. Int. Ed. 2018, 57, 1944. doi: 10.1002/anie.201712451

    21. [21]

      (21) Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S.; et al. J. Am. Chem. Soc. 2019, 141, 16569. doi: 10.1021/jacs.9b08259

    22. [22]

      (22) Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. ACS Catal. 2020, 10, 6579. doi: 10.1021/acscatal.0c01459

    23. [23]

      (23) Jiao, L.; Jiang, H.-L. Chem 2019, 5, 786. doi: 10.1016/j.chempr.2018.12.011

    24. [24]

      (24) Ye, J. Q.; Yan, J. P.; Peng, Y. L.; Li, F. W.; Sun, J. Catal. Today 2023, 410, 68. doi: 10.1016/j.cattod.2022.09.005

    25. [25]

      (25) Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He. G. H. ACS Catal. 2021, 11, 12673. doi: 10.1021/acscatal.1c02319

    26. [26]

      (26) Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F.; et al. Energy Environ. Sci. 2018, 11, 1204. doi: 10.1039/c8ee00133b

    27. [27]

      (27) Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H.-L. Angew. Chem. Int. Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219

    28. [28]

      (28) Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. J. Am. Chem. Soc. 2017, 139, 8078. doi: 10.1021/jacs.7b02736

    29. [29]

      (29) Gong, Y.-N.; Jiao, L.; Qian, Y. Y.; Pan, C.-Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S.-H.; Jiang, H.-L. Angew. Chem. Int. Ed. 2020, 59, 2705. doi: 10.1002/anie.201914977

    30. [30]

      (30) Lu, P. L.; Yang, Y. J.; Yao, J. N.; Wang, M.; Dipazir, S.; Yuan, M. L.; Zhang, J. X.; Wang, X.; Xie, Z. J.; Zhang, G. J. Appl. Catal. B 2019, 241, 113. doi: 10.1016/j.apcatb.2018.09.025

    31. [31]

      (31) Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2019, 58, 6972. doi: 10.1002/anie.201901575

    32. [32]

      (32) Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y.; et al. Angew. Chem. Int. Ed. 2018, 57, 14095. doi: 10.1002/anie.201808049

    33. [33]

    34. [34]

      (34) Geng, Z.; Cao, Y.; Chen, W.; Kong, X.; Liu, Y.; Yao, T.; Lin, Y. Appl. Catal. B 2019, 240, 234. doi: 10.1016/j.apcatb.2018.08.075

    35. [35]

      (35) Pan, F.; Zhang, H.; Liu, K.; Cullen, D.; More, K.; Wang, M.; Feng, Z.; Wang, G.; Wu, G.; Li, Y. ACS Catal. 2018, 8, 3116. doi: 10.1021/acscatal.8b00398

    36. [36]

      (36) Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y. CrystEngComm. 2007, 9, 545. doi: 10.1039/B704433J

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Jianan Hong Chenyu Xu Yan Liu Changqi Li Menglin Wang Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-. doi: 10.1016/j.actphy.2025.100099

    3. [3]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    4. [4]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    5. [5]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Jingping Li Suding Yan Jiaxi Wu Qiang Cheng Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(734)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return