Citation:
Bizhu Shao, Huijun Dong, Yunnan Gong, Jianhua Mei, Fengshi Cai, Jinbiao Liu, Dichang Zhong, Tongbu Lu. Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230502.
doi:
10.3866/PKU.WHXB202305026
-
The electrocatalytic carbon dioxide (CO2) reduction has gained recognition as an outstanding approach for transforming CO2 into renewable energy products. To accomplish this reduction reaction, the development of efficient electrocatalysts is required. Nickel-based electrocatalysts have been extensively investigated for CO2 reduction; however, nickel nanoparticles (NiNPs) have demonstrated limited catalytic performance. In this study, NiNPs implanted in N-doped porous carbon (NiNPs-NC) were prepared by thermal treatment of nickel metal-organic framework, urea, and carbon black under an N2 atmosphere. The NiNPs-NC exhibited high catalytic performance for the electroreduction of CO2 to CO in both H-type and flow cells. In the H-type cell, the CO faradaic efficiencies (FEs) of NiNPs-NC exceeded 90% in the potential window from −0.67 to −1.07 V vs. reversible hydrogen electrode (RHE), reaching a maximum CO FE of approximately 100% at −0.87 V vs. RHE. In the flow cell, the CO selectivities of NiNPs-NC exceeded 95% in the potential window from −0.50 to −0.70 V vs. RHE. The fast charge transfer, as demonstrated by electrochemical impedance spectroscopy and Tafel slope, can be attributed to the high catalytic activity of NiNPs-NC. This study provides a simple method to develop highly efficient catalysts for electrocatalytic CO2 reduction.
-
-
-
[1]
(1) Dowell, N. M.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/NCLIMATE3231
-
[2]
(2) Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Nature 2012, 484, 49. doi: 10.1038/nature10915
-
[3]
(3) Ding, M. L.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/c8cs00829a
-
[4]
(4) Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Chem. Res. 2022, 55, 2978. doi: 10.1021/acs.accounts.2c00326
-
[5]
(5) Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2023, 52, 1382. doi: 10.1039/d2cs00843b
-
[6]
(6) Lv, F.; Han, N.; Qiu, Y.; Liu, X. J.; Luo, J.; Li, Y. G. Coord. Chem. Rev. 2020, 422, 213435. doi: 10.1016/j.ccr.2020.213435
-
[7]
(7) Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. H. Nature 2019, 575, 639. doi: 10.1038/s41586-019-1760-8
-
[8]
(8) Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Chem. Soc. Rev. 2022, 51, 1234. doi: 10.1039/d1cs00893e
-
[9]
(9) Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J. Y.; Shao, M.; Wei, M. Angew. Chem. Int. Ed. 2021, 60, 7382. doi: 10.1002/ange.202014655
-
[10]
(10) Zhang, N.; Zheng, F. F.; Huang, B. L.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Adv. Mater. 2020, 32, 1906477. doi: 10.1002/adma.201906477
-
[11]
-
[12]
(12) Gong, W.; Chen, Z. J.; Dong, J. Q.; Liu, Y.; Cui, Y. Chem. Rev. 2022, 122, 9078. doi: 10.1021/acs.chemrev.1c00740
-
[13]
(13) Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Chem. Soc. Rev. 2018, 47, 6267. doi: 10.1039/c8cs00268a
-
[14]
(14) Du, J.; Li, F.; Sun, L. C. Chem. Soc. Rev. 2021, 50, 2663. doi: 10.1039/d0cs01191f
-
[15]
-
[16]
(16) Zou, L. L.; Hou, C.-C.; Liu, Z.; Pang, H.; Xu, Q. J. Am. Chem. Soc. 2018, 140, 15393. doi: 10.1021/jacs.8b09092
-
[17]
(17) Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Adv. Mater. 2021, 33, 2007442. doi: 10.1002/adma.202007442
-
[18]
(18) Bigdeli, F.; Lollar, C. T.; Morsali, A.; Zhou, H.-C. Angew. Chem. Int. Ed. 2020, 59, 4652. doi: 10.1002/anie.201900666
-
[19]
(19) Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S.-H.; Jiang, H.-L. Nat. Commun. 2020, 11, 2831. doi: 10.1038/s41467-020-16715-6
-
[20]
(20) Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X.; et al. Angew. Chem. Int. Ed. 2018, 57, 1944. doi: 10.1002/anie.201712451
-
[21]
(21) Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S.; et al. J. Am. Chem. Soc. 2019, 141, 16569. doi: 10.1021/jacs.9b08259
-
[22]
(22) Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. ACS Catal. 2020, 10, 6579. doi: 10.1021/acscatal.0c01459
-
[23]
(23) Jiao, L.; Jiang, H.-L. Chem 2019, 5, 786. doi: 10.1016/j.chempr.2018.12.011
-
[24]
(24) Ye, J. Q.; Yan, J. P.; Peng, Y. L.; Li, F. W.; Sun, J. Catal. Today 2023, 410, 68. doi: 10.1016/j.cattod.2022.09.005
-
[25]
(25) Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He. G. H. ACS Catal. 2021, 11, 12673. doi: 10.1021/acscatal.1c02319
-
[26]
(26) Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F.; et al. Energy Environ. Sci. 2018, 11, 1204. doi: 10.1039/c8ee00133b
-
[27]
(27) Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H.-L. Angew. Chem. Int. Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219
-
[28]
(28) Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. J. Am. Chem. Soc. 2017, 139, 8078. doi: 10.1021/jacs.7b02736
-
[29]
(29) Gong, Y.-N.; Jiao, L.; Qian, Y. Y.; Pan, C.-Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S.-H.; Jiang, H.-L. Angew. Chem. Int. Ed. 2020, 59, 2705. doi: 10.1002/anie.201914977
-
[30]
(30) Lu, P. L.; Yang, Y. J.; Yao, J. N.; Wang, M.; Dipazir, S.; Yuan, M. L.; Zhang, J. X.; Wang, X.; Xie, Z. J.; Zhang, G. J. Appl. Catal. B 2019, 241, 113. doi: 10.1016/j.apcatb.2018.09.025
-
[31]
(31) Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2019, 58, 6972. doi: 10.1002/anie.201901575
-
[32]
(32) Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y.; et al. Angew. Chem. Int. Ed. 2018, 57, 14095. doi: 10.1002/anie.201808049
-
[33]
-
[34]
(34) Geng, Z.; Cao, Y.; Chen, W.; Kong, X.; Liu, Y.; Yao, T.; Lin, Y. Appl. Catal. B 2019, 240, 234. doi: 10.1016/j.apcatb.2018.08.075
-
[35]
(35) Pan, F.; Zhang, H.; Liu, K.; Cullen, D.; More, K.; Wang, M.; Feng, Z.; Wang, G.; Wu, G.; Li, Y. ACS Catal. 2018, 8, 3116. doi: 10.1021/acscatal.8b00398
-
[36]
(36) Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y. CrystEngComm. 2007, 9, 545. doi: 10.1039/B704433J
-
[1]
-
-
-
[1]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[2]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[5]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[8]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[9]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[10]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[11]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[12]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[13]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[14]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[15]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[18]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(622)
- HTML views(55)