Citation: Jingyi Xie, Qianxi Lü, Weizhen Qiao, Chenyu Bu, Yusheng Zhang, Xuejun Zhai, Renqing Lü, Yongming Chai, Bin Dong. Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230502. doi: 10.3866/PKU.WHXB202305021
-
Co-based oxides have shown promise as catalysts for the oxygen evolution reaction (OER), as evidenced by experimental and theoretical studies. However, these common Co-based catalysts suffer from poor stability in acidic environments, making them susceptible to corrosion in acid electrolytes. Consequently, developing OER catalysts that can maintain both activity and stability under strongly acidic conditions is a challenging task for large-scale industrial hydrogen production applications. To address this challenge, the incorporation of manganese (Mn) into the spinel lattice of Co3O4 (CoMn1O) has been proposed, resulting in a defect-rich catalyst with improved lifetime in acidic electrolytes. The crystalline phase structures and chemical valence states were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive spectroscopy (EDS) elemental maps. The introduction of Mn led to the generation of a significant number of defects due to changes in the local crystal structure. Additionally, as the amount of Mn atoms increased, a red shift was observed in the Co 2p spectrum, indicating an increase in the overall valence of Co and the formation of more stable Co―O bonds. Moreover, when the Mn-to-Co ratio reached 1 (CoMn1O), the resulting catalyst exhibited promising OER activity, with overpotentials of 415 and 552 mV at 10 and 50 mA·cm-2, respectively. Detailed physical characterization and electrochemical tests demonstrated that CoMn1O exhibited over four times the stability of Mn-free Co3O4 (CoMn0O). This enhanced stability can be attributed to the introduction of Mn, which promotes electron density bias of Co towards O, resulting in the formation of more stable Co―O bonds. Mn also facilitates acidic oxygen evolution by delaying the oxidation rate of the Co active sites, thereby enhancing stability. Density functional theory (DFT) calculations were further employed to analyze the electronic structures of CoMn1O and CoMn0O. The d-band center of Co 3d (εd) in CoMn1O shifted closer to the Fermi level (EF) compared to that of CoMn0O, indicating a reduced reaction energy barrier for CoMn1O and enhanced bonding interaction with OER intermediates. Overall, this work presents a promising strategy for achieving highly efficient and stable acidic oxygen evolution using noble-metal-free electrocatalysts.
-
-
[1]
(1) Wang, X.; Zhong, H.; Xi, S.; Lee, W. S. V.; Xue, J. Adv. Mater. 2022, 34, 2107956. doi:10.1002/adma.202107956
-
[2]
(2) Liu, W.; Li, X.; Wang, Y.; Yang, D.; Guo, Z.; Liu, M.; Wang, J. J. Energy Chem. 2023, 81, 339. doi:10.1016/j.jechem.2023.02.032
-
[3]
(3) Wang, F. L.; Xu, N.; Yu, C. J.; Xie, J. Y.; Dong, B.; Zhang, X. Y.; Dong, Y. W.; Zhou, Y. L.; Chai, Y. M. Appl. Catal. B 2023, 330, 122633. doi:10.1016/j.apcatb.2023.122633
-
[4]
(4) Liu, W.; Wang, Y.; Qi, K.; Wang, Y.; Wen, F.; Wang, J. J. Alloy. Compd. 2023, 933, 167789. doi:10.1016/j.jallcom.2022.167789
-
[5]
(5) Wang, F. L.; Zhang, X. Y.; Zhou, J. C.; Shi, Z. N.; Dong, B.; Xie, J. Y.; Dong, Y. W.; Yu, J. F.; Chai, Y. M. Inorg. Chem. Front. 2022, 9, 2068. doi:10.1039/D2QI00003B
-
[6]
(6) Zhu, K.; Shi, F.; Zhu, X.; Yang, W. Nano Energy 2020, 73, 104761. doi:10.1016/j.nanoen.2020.104761
-
[7]
(7) Jiang, J.; Zhou, X. L.; Lv, H. G.; Yu, H. Q.; Yu, Y. Adv. Funct. Mater. 2023, 33, 2212160. doi:10.1002/adfm.202212160
-
[8]
(8) Chen, R.; Hung, S. F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H. B.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Adv. Mater. 2019, 31, 1903909. doi:10.1002/adma.201903909
-
[9]
(9) Kibsgaard, J.; Chorkendorff, I. Nat. Energy 2019, 4, 430. doi:10.1038/s41560-019-0407-1
-
[10]
(10) Blasco Ahicart, M.; Soriano López, J.; Carbó, J. J.; Poblet, J. M.; Galan Mascaros, J. R. Nat. Chem. 2018, 10, 24. doi:10.1038/nchem.2874
-
[11]
(11) Kim, M.; Park, J.; Wang, M.; Wang, Q.; Kim, M. J.; Kim, J. Y.; Cho, H. S.; Kim, C. H.; Feng, Z.; Kim, B. H.; et al. Appl. Catal. B 2022, 302, 120834. doi:10.1016/j.apcatb.2021.120834
-
[12]
(12) Xia, T.; Liu, C.; Lu, Y.; Jiang, W.; Li, H.; Ma, Y.; Wu, Y.; Che, G. Appl. Surf. Sci. 2022, 605, 154727. doi:10.1016/j.apsusc.2022.154727
-
[13]
(13) Choi, S.; Park, J.; Kabiraz, M. K.; Hong, Y.; Kwon, T.; Kim, T.; Oh, A.; Baik, H.; Lee, M.; Paek, S. M.; et al. Adv. Funct. Mater. 2020, 30, 2003935. doi:10.1002/adfm.202003935
-
[14]
(14) Zhu, J.; Xie, M.; Chen, Z.; Lyu, Z.; Chi, M.; Jin, W.; Xia, Y. Adv. Energy Mater. 2020, 10, 1904114. doi:10.1002/aenm.201904114
-
[15]
(15) Joo, J.; Park, Y.; Kim, J.; Kwon, T.; Jun, M.; Ahn, D.; Baik, H.; Jang, J. H.; Kim, J. Y.; Lee, K. Small Methods 2022, 6, 2101236. doi:10.1002/smtd.202101236
-
[16]
(16) Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D.; et al. Angew. Chem. Int. Ed. 2014, 53, 14016. doi:10.1002/anie.201406455
-
[17]
(17) Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Chem. Sci. 2015, 6, 3321. doi:10.1039/C5SC00518C
-
[18]
(18) Su, H.; Zhao, X.; Cheng, W.; Zhang, H.; Li, Y.; Zhou, W.; Liu, M.; Liu, Q. ACS Energy Lett. 2019, 4, 1816. doi:10.1021/acsenergylett.9b01129
-
[19]
(19) Yang, S.; Zhang, T.; Li, G.; Yang, L.; Lee, J. Y. Energy Storage Mater. 2017, 6, 140. doi:10.1016/j.ensm.2016.11.001
-
[20]
(20) Wang, H.; Zhang, X.; Yin, F.; Chu, W.; Chen, B. J. Mater. Chem. A 2020, 8, 22111. doi:10.1039/D0TA04331A
-
[21]
(21) Natarajan, K.; Munirathinam, E.; Yang, T. C. K. ACS Appl. Mater. Interfaces 2021, 13, 27140. doi:10.1021/acsami.1c07267
-
[22]
(22) Shang, F.; He, H.; Li, P.; Cai, H.; An, B.; Li, X.; Yang, S.; Sun, Z.; Wang, B. J. Colloid Interface Sci. 2023, 641, 329. doi:10.1016/j.jcis.2023.03.036
-
[23]
(23) Jiao, F.; Frei, H. Angew. Chem. Int. Ed. 2009, 48, 1841. doi:10.1002/anie.200805534
-
[24]
(24) Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E. Chem. Mater. 2017, 29, 950. doi:10.1021/acs.chemmater.6b02879
-
[25]
(25) Frydendal, R.; Paoli, E. A.; Chorkendorff, I.; Rossmeisl, J.; Stephens, I. E. L. Adv. Energy Mater. 2015, 5, 1500991. doi:10.1002/aenm.201500991
-
[26]
(26) Li, A.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y.; Jiang, Q.; Li, C.; Han, H.; Nakamura, R. Angew. Chem. Int. Ed. 2019, 58, 5054. doi:10.1002/anie.201813361
-
[27]
(27) Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K.; et al. Science 2016, 353, 1011. doi:10.1126/science.aaf5050
-
[28]
(28) Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K.; et al. ACS Energy Lett. 2021, 6, 1588. doi:10.1021/acsenergylett.1c00283
-
[29]
(29) Strickler, A. L.; Flores, R. A.; King, L. A.; Nørskov, J. K.; Bajdich, M.; Jaramillo, T. F. ACS Appl. Mater. Interfaces 2019, 11, 34059. doi:10.1021/acsami.9b13697
-
[30]
(30) Fan, R. Y.; Zhao, H. Y.; Zhen, Y. N.; Wang, F. G.; Hu, H.; Chai, Y. M.; Dong, B. Fuel 2023, 333, 126361. doi:10.1016/j.fuel.2022.126361
-
[31]
(31) Li, A.; Kong, S.; Guo, C.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q.; Han, H.; Xiao, J.; Nakamura, R. Nat. Catal. 2022, 5, 109. 10. doi:1038/s41929-021-00732-9
-
[32]
(32) Xie, J. Y.; Liu, Z. Z.; Li, J.; Feng, L.; Yang, M.; Ma, Y.; Liu, D. P.; Wang, L.; Chai, Y. M.; Dong, B. J. Energy Chem. 2020, 48, 328. doi:10.1016/j.jechem.2020.02.031
-
[33]
(33) Rong, C.; Shen, X.; Wang, Y.; Thomsen, L.; Zhao, T.; Li, Y.; Lu, X.; Amal, R.; Zhao, C. Adv. Mater. 2022, 34, 2110103. doi:10.1002/adma.202110103
-
[34]
(34) Liu, S.; Yin, Y.; Ni, D.; Hui, K. S.; Ma, M.; Park, S.; Hui, K. N.; Ouyang, C. Y.; Jun, S. C. Energy Storage Mater. 2019, 22, 384. doi:10.1016/j.ensm.2019.02.014
-
[35]
(35) Silva, A. L.; Esteves, L. M.; Silva, L. P. C.; Ramos, V. S.; Passos, F. B.; Carvalho, N. M. F. RSC Adv. 2022, 12, 26846. doi:10.1039/D2RA04570B
-
[36]
(36) Kwong, W. L.; Lee, C. C.; Shchukarev, A.; Messinger, J. Chem. Commun. 2019, 55, 5017. doi:10.1039/C9CC01369E
-
[37]
(37) Zhu, Y.; Zhang, T.; An, T.; Zong, Y.; Lee, J. Y. J. Energy Chem. 2020, 49, 8. doi:10.1016/j.jechem.2020.01.026
-
[38]
(38) Yan, K. L.; Qin, J. F.; Lin, J. H.; Dong, B.; Chi, J. Q.; Liu, Z. Z.; Dai, F. N.; Chai, Y. M.; Liu, C. G. J. Mater. Chem. A 2018, 6, 5678. doi:10.1039/C8TA00070K
-
[39]
(39) Yang, S.; Zhan, Y.; Li, J.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8, 3535. doi:10.1021/acsami.6b00437
-
[40]
(40) Niu, S.; Kong, X. P.; Li, S.; Zhang, Y.; Wu, J.; Zhao, W.; Xu, P. Appl. Catal. B 2021, 297, 120442. doi:10.1016/j.apcatb.2021.120442
-
[41]
(41) Anantharaj, S.; Karthick, K.; Kundu, S. Inorg. Chem. 2019, 58, 8570. doi:10.1021/acs.inorgchem.9b00868
-
[42]
(42) Chatti, M.; Gardiner, J. L.; Fournier, M.; Johannessen, B.; Williams, T.; Gengenbach, T. R.; Pai, N.; Nguyen, C.; MacFarlane, D. R.; Hocking, R. K.; et al. Nat. Catal. 2019, 2, 457. doi:10.1038/s41929-019-0277-8
-
[43]
(43) Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 2300765. doi:10.1002/aenm.202300765
-
[44]
(44) Wang, F. L.; Dong, Y. W.; Yu, C. J.; Dong, B.; Zhang, X. Y.; Fan, R. Y.; Xie, J. Y.; Zhou, Y. N.; Chai, Y. M. Appl. Catal. B 2023, 331, 122660. doi:10.1016/j.apcatb.2023.122660
-
[1]
-
-
[1]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[2]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[3]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[4]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[5]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[7]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[8]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[11]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[12]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[13]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[14]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[15]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[16]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[17]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[18]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[19]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[20]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(453)
- HTML views(52)