Citation: Yuanqing Wang, Yusong Pan, Hongwu Zhu, Yanlei Xiang, Rong Han, Run Huang, Chao Du, Chengling Pan. Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230405. doi: 10.3866/PKU.WHXB202304050
-
Environmental problems have become more and more serious with the continuous development of industrialized society. Especially, the problem of industrial wastewater has been a hot research issue in the field of catalytic degradation. Coupling photocatalysis and advanced oxidation processes (AOPs) is considered to be an efficient organic pollutant degradation technology due to its high efficiency, non-selectivity, and mild treatment conditions. In this article, the authors focused on the synthesis and characterization of Bismuth tungstate (Bi2WO6) nanoflowers, which were prepared using a straightforward hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. To investigate the micro-morphology, crystal phase, surface chemical element states, and optical characteristics of the Bi2WO6 nanoflowers, various methods such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflection spectroscopy (DRS) were used. The catalytic performance of the Bi2WO6 nanoflowers was then investigated for degrading organic pollutants under different catalytic systems. The removal efficiency of Rhodamine B (RhB) was up to 96.39% within 40 min under vis/potassium monopersulfate triple salt (PMS)/ Bi2WO6 system, which is obviously superior to that in both PMS/ Bi2WO6 (38.77% in 40 min) and vis/Bi2WO6 (31.82% in 40 min) systems, indicating that synergistic effects between visible-light irradiation and PMS accelerated the catalytic activity of Bi2WO6 on the RhB degradation. The researchers also investigated the effect of ambient conditions on the catalytic performance of the systems, such as catalyst dosage, PMS concentration, pH value, and ion concentration. Interestingly, the vis/PMS/Bi2WO6 system demonstrated high removal efficiency (up to 90%) despite changes in these parameters. However, the catalytic degradation rate (k) was influenced by these parameters in this system. Conversely, the environmental parameters have obvious influence on the catalytic degradation rate (k) under vis/PMS/ Bi2WO6 system. The results showed that when the catalyst dosage and PMS concentration increased, so did the K value. On the other hand, the K value increased firstly and then decreased with the rise of pH value in the catalytic system. And the catalytic degradation rate reached its maximum value (0.1502 min−1) at pH = 7 in the catalytic system. Interestingly, the presence of Cl− in the system would be beneficial for promoting the catalytic degradation efficiency. Conversely, the existence of CO32− in the system would obviously inhibit the catalytic degradation efficiency. The result of the cycling experiments also verified that the catalyst possessed excellent stability for the degradation of organic dyes. Furthermore, the researchers conducted quenching experiments and EPR (electron paramagnetic resonance) tests, which revealed the crucial roles of superoxide radicals (•O− 2) and singlet oxygen (1O2) in the degradation of organic pollutants. Overall, the excellent catalytic activity of Bi2WO6 in the vis/PMS synergistic catalytic system was attributed to its outstanding visible-light-response photocatalysis activity and the superior ability of bismuth ions in activating PMS.
-
-
[1]
-
[2]
(2) Zimur, S. D.; Gaikwad, P.; Mali, A. V.; Patil, A. P.; Burungale, S. H.; Kamble, P. D. J. Alloy. Compd. 2023, 947, 169572. doi: 10.1016/j.jallcom.2023.169572
-
[3]
(3) Xu, D.; Ma, H. J. Clean. Prod. 2021, 313, 127758. doi: 10.1016/j.jclepro.2021.127758
-
[4]
(4) Yang, W.; Ding, K.; Chen, G. Z.; Wang, H.; Deng, X. Y. Molecules 2023, 28, 2796. doi: 10.3390/molecules28062796.
-
[5]
(5) Abd El-Ghany, N. A.; Elella, M. H. A.; Abdallah, H. M.; Mostafa, M. S.; Samy, M. J. Polym. Environ. 2023, 31, 2792. doi: 10.1007/s10924-023-02798-x
-
[6]
(6) Li, J.; Tang, X.; Zhang, H.; Gao, X.; Zhang, S.; Tan, T. Ind. Crop. Prod. 2022, 188, 115717. doi: 10.1016/j.indcrop.2022.115717
-
[7]
(7) Tomaz, A. T.; Costa, C. R.; de Lourdes, S. V. M.; Pedicini, R.; Ribeiro, J. Nanomaterials (Basel) 2022, 12, 4301. doi: 10.3390/nano12234301
-
[8]
-
[9]
(9) Zhang, X.; Liu, W.; Gao, T.; Cao, D.; Che, X.; Zhou, S.; Shang, J.; Cheng, X. Environ. Sci. Pollut. Res. 2023, 30, 53157. doi: 10.1007/s11356-023-26056-8
-
[10]
(10) Xiang, W.; Ji, Q.; Xu, C.; Guo, Y.; Liu, Y.; Sun, D.; Zhou, W.; Xu, Z.; Qi, C.; Yang, S. Appl. Catal. B-Environ. 2021, 285, 119847. doi: 10.1016/j.apcatb.2020.119847
-
[11]
(11) Liang, J.; Gao, K.; Zhou, A.; Fang, Y.; Su, S.; Fu, L.; Sun, M.; Duan, X. Appl. Catal. B-Environ. 2023, 327, 122440. doi: 10.1016/j.apcatb.2023.122440
-
[12]
(12) Qin, Y.; Li, H.; Ma, J. Chem. Eng. J. 2023, 451, 138814. doi: 10.1016/j.cej.2022.138814
-
[13]
(13) Molnar Jazić, J.; Đurkić, T.; Bašić, B.; Watson, M.; Apostolović, T.; Tubić, A.; Agbaba, J. Environ. Sci.-Wat. Res. Technol. 2020, 6, 2800. doi: 10.1039/d0ew00358a
-
[14]
(14) Pang, Y.; Lei, H. Chem. Eng. J. 2016, 287, 585. doi: 10.1016/j.cej.2015.11.076
-
[15]
(15) Zhang, M.; Tao, H.; Zhai, C.; Yang, J.; Zhou, Y.; Xia, D.; Comodi, G.; Zhu, M. Appl. Catal. B-Environ. 2023, 326, 122399. doi: 10.1016/j.apcatb.2023.122399
-
[16]
(16) Wang, A.; Ni, J.; Wang, W.; Liu, D.; Zhu, Q.; Xue, B.; Chang, C.-C.; Ma, J.; Zhao, Y. Appl. Catal. B-Environ. 2022, 319, 121926. doi: 10.1016/j.apcatb.2022.121926
-
[17]
(17) Pan, Y.; Zheng, W.; Ou, L.; Yan, H.; Huang, R.; Pan, C. J. Mater. Sci.-Mater. Electron. 2022, 33, 18897. doi: 10.1007/s10854-022-08739-z
-
[18]
(18) Oh, W.-D.; Chang, V. W. C.; Hu, Z.-T.; Goei, R.; Lim, T.-T. Chem. Eng. J. 2017, 323, 260. doi: 10.1016/j.cej.2017.04.107
-
[19]
(19) Yi, H.; Qin, L.; Huang, D.; Zeng, G.; Lai, C.; Liu, X.; Li, B.; Wang, H.; Zhou, C.; Huang, F. Chem. Eng. J. 2019, 358, 480. doi: 10.1016/j.cej.2018.10.036
-
[20]
(20) Wang, F.; Wang, Y.; Li, Y.; Cui, X.; Zhang, Q.; Xie, Z.; Liu, H.; Feng, Y.; Lv, W.; Liu, G. Dalton Trans. 2018, 47, 6924. doi: 10.1039/c8dt00919h
-
[21]
(21) Monisha, K.; Kavipriya, S.; Silambarasan, A.; Arulmozhi, R.; Abirami, N.; Ramesh, R. Optik 2020, 206, 164366. doi: 10.1016/j.ijleo.2020.164366
-
[22]
(22) Liu, J.; Nie, Q.; Tan, Z.; Luo, Y.; Wang, S.; Yu, H. RSC Adv. 2020, 10, 40597. doi: 10.1039/d0ra07559k
-
[23]
(23) Zhu, X.; Qin, F.; Zhang, X.; Zhong, Y.; Wang, J.; Jiao, Y.; Luo, Y.; Feng, W. Int. J. Mol. Sci. 2022, 23, 8422. doi: 10.3390/ijms23158422
-
[24]
(24) Huang, J.; Li, X.; Su, G.; Gao, R.; Wang, W.; Dong, B.; Cao, L. J. Mater. Sci. 2018, 53, 16010. doi: 10.1007/s10853-018-2672-y
-
[25]
(25) Yu, K.; Wei, R.; Yang, S.; Guo, H.; Hua, H.; Sun, C.; Luo, X. J. Hazard. Mater. 2021, 406, 124297. doi: 10.1016/j.jhazmat.2020.124297
-
[26]
(26) Guo, X.; Wu, D.; Long, X.; Zhang, Z.; Wang, F.; Ai, G.; Liu, X. Mater. Charact. 2020, 163, 110297. doi: 10.1016/j.matchar.2020.110297
-
[27]
(27) Yuan, A.; Lei, H.; Wang, Z. J. Colloid Interface Sci. 2020, 560, 40. doi: 10.1016/j.jcis.2019.10.060
-
[28]
(28) Zhao, W.; Duan, Z.; Zheng, Z.; Li, B. Chem. Eng. J. 2022, 433, 133742. doi: 10.1016/j.cej.2021.133742
-
[29]
(29) Shen, Z.; Zhou, H.; Pan, Z.; Guo, Y.; Yuan, Y.; Yao, G.; Lai, B. J. Hazard. Mater. 2020, 400, 123187. doi: 10.1016/j.jhazmat.2020.123187
-
[30]
(30) Oh, W.-D.; Lua, S.-K.; Dong, Z.; Lim, T.-T. J. Mater. Chem. A 2014, 2, 15836. doi: 10.1039/c4ta02758b
-
[31]
(31) Wang, L.; Guo, C.; Chen, F.; Ning, J.; Zhong, Y.; Hu, Y. J. Colloid Interface Sci. 2021, 602, 868. doi: 10.1016/j.jcis.2021.06.044
-
[32]
(32) Niu, J.; Dai, P.; Wang, K.; Zhang, Z.; Zhang, Q.; Yao, B.; Yu, X. Adv. Powder Technol. 2020, 31, 2327. doi: 10.1016/j.apt.2020.03.025
-
[33]
(33) Yan, J.; Gong, L.; Chai, S.; Guo, C.; Zhang, W.; Wan, H. Sep. Purif. Technol. 2022, 302, 122016. doi: 10.1016/j.seppur.2022.122016
-
[34]
(34) Wang, Z.; Yuan, R.; Guo, Y.; Xu, L.; Liu, J. J. Hazard. Mater. 2011, 190, 1083. doi: 10.1016/j.jhazmat.2011.04.016
-
[35]
(35) Ji, Y.; Dong, C.; Kong, D.; Lu, J. J. Hazard. Mater. 2015, 285, 491. doi: 10.1016/j.jhazmat.2014.12.026
-
[36]
(36) Liang, C.; Wang, Z. S.; Mohanty, N. Sci. Total Environ. 2006, 370, 271. doi: 10.1016/j.scitotenv.2006.08.028
-
[37]
(37) He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wang, Y.; Yan, Z. Chem. Commun. 2014, 50, 7063. doi: 10.1039/c4cc01086h
-
[38]
(38) Li, X.; Wang, Z.; Zhang, B.; Rykov, A. I.; Ahmed, M. A.; Wang, J. Appl. Catal. B-Environ. 2016, 181, 788. doi: 10.1016/j.apcatb.2015.08.050
-
[39]
(39) Yan, H.; Pan, Y.; Liao, X.; Zhu, Y.; Huang, R.; Pan, C. Appl. Surf. Sci. 2021, 559, 149952. doi: 10.1016/j.apsusc.2021.149952
-
[40]
(40) Huang, H.; Liu, K.; Chen, K.; Zhang, Y.; Zhang, Y.; Wang, S. J. Phys. Chem. C 2014, 118, 14379. doi: 10.1021/jp503025b
-
[41]
(41) Chung, H. Y.; Wu, X.; Amal, R.; Ng, Y. H. Mol. Catal. 2020, 487, 110887. doi: 10.1016/j.mcat.2020.110887
-
[42]
(42) Missaoui, K.; Ouertani, R.; Jbira, E.; Boukherroub, R.; Bessais, B. Environ. Sci. Pollut. Res. 2021, 28, 52236. doi: 10.1007/s11356-021-14320-8
-
[43]
(43) Zhang, J.; Zhai, C.; Zhao, W.; Chen, Y.; Yin, R.; Zeng, L.; Zhu, M. Chem. Eng. J. 2020, 397, 125310. doi: 10.1016/j.cej.2020.125310
-
[44]
(44) Heidarpour, H.; Padervand, M.; Soltanieh, M.; Vossoughi, M. Chem. Eng. Res. Des. 2020, 153, 709. doi: 10.1016/j.cherd.2019.09.007
-
[45]
(45) Sabri, M.; Habibi-Yangjeh, A.; Ghosh, S. J. Photochem. Photobiol. A-Chem. 2020, 391, 112397. doi: 10.1016/j.jphotochem.2020.112397
-
[46]
(46) Chen, S.; Ma, L.; Du, Y.; Zhan, W.; Zhang, T. C.; Du, D. Sep. Purif. Technol. 2021, 256, 117788.doi: 10.1016/j.seppur.2020.117788
-
[47]
(47) Liu, Y.; Guo, H.; Zhang, Y.; Cheng, X.; Zhou, P.; Zhang, G.; Wang, J.; Tang, P.; Ke, T.; Li, W. Sep. Purif. Technol. 2018, 192, 88. doi: 10.1016/j.seppur.2017.09.045
-
[1]
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[10]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[12]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[13]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[14]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[15]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[16]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[17]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[18]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[19]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[20]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(427)
- HTML views(26)