Citation: Yajuan Xing,  Hui Xue,  Jing Sun,  Niankun Guo,  Tianshan Song,  Jiawen Sun,  Yi-Ru Hao,  Qin Wang. Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304046 shu

Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity

  • Corresponding author: Hui Xue,  Qin Wang, 
  • Received Date: 25 April 2023
    Revised Date: 13 June 2023
    Accepted Date: 15 June 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22269015) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (2021ZD11).

  • Owing to the increasingly serious environmental problems, there is an urgent need for clean energy with a high energy density and low carbon emissions. As such, electrocatalytic water decomposition has attracted significant interest as an efficient hydrogen production method. The electrolysis of water has two important half-reactions: the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Among these two reactions, OER is considered to be the crucial and rate-determining step due to its slower kinetic process and higher overpotential compared to HER. Although noble metal oxides such as IrO2 and RuO2 have excellent OER properties under alkaline conditions, their high cost and scarcity limit their commercial application. Therefore, it is of significant interest to develop alternative OER electrodes with excellent catalytic activity, extremely low overpotential, high durability, and low cost. Ni2P has attracted interest as an electrocatalyst and has improved activity after combination with a cocatalyst. The improved activity is due to heterojunction formation changing the electronic structure and charge transport at the active site. To this end, a novel highly efficient Cu3P/Ni2P heterojunction catalyst has been successfully constructed, in which Cu3P functions solely as a cocatalyst to enhance the electrocatalytic activity by regulating the electron transfer and surface reconstruction of Ni2P. Consequently, Cu3P/Ni2P exhibits superior OER activity and has an ultra-low overpotential of 213 mV at a current density of 10 mA·cm-2 and a small Tafel slope of 62 mV·dec-1 in 1 mol·L-1 KOH. Additionally, this peculiar self-supporting electrode possesses excellent electrochemical stability and long-term durability at a current density of 10 mA·cm-2 in an alkaline medium. Through a combination of experimental results and theoretical calculations, it has been shown that the Cu3P cocatalyst effectively tailors the electronic structure of the Ni center. This results in charge redistribution and a lower reaction energy barrier, thereby significantly improving the OER catalytic activity. In addition, the abundant grain boundaries and lattice distortions induced by the Cu3P cocatalyst promote surface reconstruction to form Ni5O(OH)9, providing an efficient active site for OER. This work constructed a novel heterojunction electrocatalyst by introducing a cocatalyst, offering an avenue for the optimization of the electrocatalytic performance of transition metal phosphide.
  • 加载中
    1. [1]

      (1) Zhang, Y.-C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J.-J. Adv. Sci. 2019, 6, 1900053. doi:10.1002/advs.201900053

    2. [2]

    3. [3]

      (3) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi:10.1126/science.aav3506

    4. [4]

      (4) Morales-Guio, C. G.; Stern, L.-A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi:10.1039/C3CS60468C

    5. [5]

    6. [6]

      (6) Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 19085. doi:10.1002/anie.202107123

    7. [7]

      (7) Sun, M.; Müllen, K.; Yin, M. Chem. Soc. Rev. 2016, 45, 1513. doi:10.1039/C5CS00754B

    8. [8]

      (8) Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi:10.1002/anie.201710556

    9. [9]

      (9) Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Chem. Soc. Rev. 2021, 50, 12338. doi:10.1039/D1CS00590A

    10. [10]

      (10) Li, R.; Li, Y.; Yang, P.; Ren, P.; Wang, D.; Lu, X.; Xu, R.; Li, Y.; Xue, J.; Zhang, J.; et al. Appl. Catal. B 2022, 318, 121834. doi:10.1016/j.apcatb.2022.121834

    11. [11]

      (11) Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi:10.1021/ja0540019

    12. [12]

      (12) Liu, X.; Huang, J.; Li, T.; Chen, W.; Chen, G.; Han, L.; Ostrikov, K. J. Mater. Chem. A 2022, 10, 13448. doi:10.1039/D2TA03181G

    13. [13]

      (13) Sun, T.; Zhang, S.; Xu, L.; Wang, D.; Li, Y. Chem. Commun. 2018, 54, 12101. doi:10.1039/C8CC06566G

    14. [14]

      (14) Hu, X.; Luo, G.; Guo, X.; Zhao, Q.; Wang, R.; Huang, G.; Jiang, B.; Xu, C.; Pan, F. Sci. Bull. 2021, 66, 708. doi:10.1016/j.scib.2020.11.009

    15. [15]

      (15) Jiang, X.; Yue, X.; Li, Y.; Wei, X.; Zheng, Q.; Xie, F.; Lin, D.; Qu, G. Chem. Eng. J. 2021, 426, 130718. doi:10.1016/j.cej.2021.130718

    16. [16]

      (16) Li, A.; Zhang, L.; Wang, F.; Zhang, L.; Li, L.; Chen, H.; Wei, Z. Appl. Catal. B 2022, 310, 121353. doi:10.1016/j.apcatb.2022.121353

    17. [17]

      (17) Zhang, K.; Zhang, Z.; Shen, H.; Tang, Y.; Liang, Z.; Zou, R. Sci. China Mater. 2022, 65, 1522. doi:10.1007/s40843-021-1947-8

    18. [18]

      (18) Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Adv. Mater. 2019, 31, 1900430. doi:10.1002/adma.201900430

    19. [19]

      (19) Wang, L.; Song, L.; Yang, Z.; Chang, Y.-M.; Hu, F.; Li, L.; Li, L.; Chen, H.-Y.; Peng, S. Adv. Funct. Mater. 2023, 33, 2210322. doi:10.1002/adfm.202210322

    20. [20]

      (20) Tang, Y.-J.; Zou, Y.; Zhu, D. J. Mater. Chem. A 2022, 10, 12438. doi:10.1039/D2TA02620A

    21. [21]

      (21) Wang, H.-Y.; Ren, J.-T.; Wang, L.; Sun, M.-L.; Yang, H.-M.; Lv, X.-W.; Yuan, Z.-Y. J. Energy Chem. 2022, 75, 66. doi:10.1016/j.jechem.2022.08.019

    22. [22]

      (22) Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2022, 15, 1730. doi:10.1007/s12274-021-3794-0

    23. [23]

      (23) Chen, T.; Li, B.; Song, K.; Wang, C.; Ding, J.; Liu, E.; Chen, B.; He, F. J. Mater. Chem. A 2022, 10, 22750. doi:10.1039/D2TA04879E

    24. [24]

      (24) Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S.-Z. Acc. Chem. Res. 2017, 50, 915. doi:10.1021/acs.accounts.6b00635

    25. [25]

      (25) Li, C.; Yuan, Q.; Ni, B.; He, T.; Zhang, S.; Long, Y.; Gu, L.; Wang, X. Nat. Commun. 2018, 9, 3702. doi:10.1038/s41467-018-06043-1

    26. [26]

      (26) Zhang, Y.-C.; Han, C.; Gao, J.; Pan, L.; Wu, J.; Zhu, X.-D.; Zou, J.-J. ACS Catal. 2021, 11, 12485. doi:10.1021/acscatal.1c03260

    27. [27]

      (27) Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. Adv. Mater. 2016, 28, 8712. doi:10.1002/adma.201603075

    28. [28]

      (28) Zhao, W.-Y.; Ni, B.; Yuan, Q.; He, P.-L.; Gong, Y.; Gu, L.; Wang, X. Adv. Energy Mater. 2017, 7, 1601593. doi:10.1002/aenm.201601593

    29. [29]

      (29) Shi, Y.; Ma, Z.-R.; Xiao, Y.-Y.; Yin, Y.-C.; Huang, W.-M.; Huang, Z.-C.; Zheng, Y.-Z.; Mu, F.-Y.; Huang, R.; Shi, G.-Y.; et al. Nat. Commun. 2021, 12, 3021. doi:10.1038/s41467-021-23306-6

    30. [30]

    31. [31]

      (31) Xu, X.; He, Y.; Huang, W.; Cao, A.; Kang, L.; Liu, J. ACS Appl. Mater. Interfaces 2022, 14, 17520. doi:10.1021/acsami.2c02418

    32. [32]

      (32) Han, B.; Du, X.; Li, J.; Wang, H.; Liu, G.; Li, J. Appl. Surf. Sci. 2022, 604, 154617. doi:10.1016/j.apsusc.2022.154617

    33. [33]

      (33) Han, Q.; Luo, Y.; Li, J.; Du, X.; Sun, S.; Wang, Y.; Liu, G.; Chen, Z. Appl. Catal. B 2022, 304, 120937. doi:10.1016/j.apcatb.2021.120937

    34. [34]

      (34) Hou, C.-C.; Chen, Q.-Q.; Wang, C.-J.; Liang, F.; Lin, Z.; Fu, W.-F.; Chen, Y. ACS Appl. Mater. Interfaces 2016, 8, 23037. doi:10.1021/acsami.6b06251

    35. [35]

      (35) Wang, H.; Zhou, T.; Li, P.; Cao, Z.; Xi, W.; Zhao, Y.; Ding, Y. ACS Sustain. Chem. Eng. 2018, 6, 380. doi:10.1021/acssuschemeng.7b02654

    36. [36]

      (36) Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Nat. Energy 2020, 5, 222. doi:10.1038/s41560-020-0576-y

    37. [37]

      (37) Chen, J.; Li, X.; Ma, B.; Zhao, X.; Chen, Y. Nano Res. 2022, 15, 2935. doi:10.1007/s12274-021-3915-9

    38. [38]

      (38) Zhang, X.; Wu, A.; Wang, D.; Jiao, Y.; Yan, H.; Jin, C.; Xie, Y.; Tian, C. Appl. Catal. B 2023, 328, 122474. doi:10.1016/j.apcatb.2023.122474

    39. [39]

      (39) Li, D.; Zhou, C.; Xing, Y.; Shi, X.; Ma, W.; Li, L.; Jiang, D.; Shi, W. Chem. Commun. 2021, 57, 8158. doi:10.1039/D1CC00535A

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(525)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return