Citation: Jia Wang,  Qing Qin,  Zhe Wang,  Xuhao Zhao,  Yunfei Chen,  Liqiang Hou,  Shangguo Liu,  Xien Liu. P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304044 shu

P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions

  • Corresponding author: Qing Qin,  Xien Liu, 
  • Received Date: 24 April 2023
    Revised Date: 13 June 2023
    Accepted Date: 14 June 2023

    Fund Project: The project was supported by the Taishan Scholar Program of Shandong Province (ts201712045, tsqn202211162), the National Natural Science Foundation of China (22102079), and the Natural Science Foundation of Shandong Province (ZR2021YQ10).

  • The development of efficient synthetic routes for ammonia (NH3) production is the cornerstone of the modern industrial processes and human survival. Owing to the chemical inertness of nitrogen, the current ammonia industry suffers from high energy consumption and high CO2 emission. Electrochemical nitrogen reduction reaction (NRR) provides a promising alternative to the energy-intensive Haber-Bosch (HB) process, enabling green and sustainable NH3 production. However, a low NH3 yield and limited energy conversion efficiency due to the chemical inertness of N2 and competitive hydrogen evolution reaction (HER) are still critical challenges in artificial nitrogen fixation using the electrochemical NRR. Herein, we report a hole-enriched P-doped carbon (PC)-supported Zn3(PO4)2/Zn2P2O7 nanocomposite (h-PC/Zn3(PO4)2/Zn2P2O7) for efficient electrocatalytic conversion of N2 to NH3 in both acidic and neutral media. Remarkably, the unique hierarchical porous structure of the h-PC/Zn3(PO4)2/Zn2P2O7 catalyst improves the surface roughness and facilitates the diffusion of N2 within the catalyst layer, thereby prolonging the residence time of N2 and improving the utilization of active sites. The uniform distribution of multiple components modulates the electronic structure of the active sites and optimizes the adsorption behavior of various reaction intermediates, enhancing the intrinsic activity of the catalyst. Benefiting from the porous structure and multicomponent active sites, including the Zn species and PC, the h-PC/Zn3(PO4)2/Zn2P2O7 achieves an excellent NRR performance with an NH3 yield rate of 38.7 ± 1.2 μg·h-1·mgcat-1 and Faradaic efficiency (FE) of 19.8% ± 0.9% at -0.2 V vs. reversible hydrogen electrode (RHE) in 0.1 mol·L-1 HCl electrolyte. Moreover, it delivers a high NH3 yield rate of 17.1 ± 0.8 μg·h-1·mgcat-1 with an FE of 15.9% ± 0.6% at -0.2 V vs. RHE in 0.1 mol·L-1 Na2SO4 solution, which is superior to those of PC/Zn3P2, C/ZnO, and many other non-noble-metal-based electrocatalysts. Ex situ X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were conducted to monitor the changes in the composition and structure of h-PC/Zn3(PO4)2/Zn2P2O7 after being used in NRR. In particular, a new signal of N appeared in the XPS profile after NRR, confirming the occurrence of NRR. This work provides a new strategy for synchronously constructing mass transfer channels and coupling different active sites to synergistically enhance the NRR activity and selectivity of a catalyst, which is of great significance in progressing the industrialization of green ammonia production.
  • 加载中
    1. [1]

      (1) Yao, D.; Tang, C.; Wang, P.; Cheng, H.; Jin, H.; Ding, L.; Qiao, S. Chem. Eng. Sci. 2022, 257, 117735. doi:10.1016/j.ces.2022.117735

    2. [2]

      (2) Zhou, S.; Jang, H.; Qin, Q.; Hou, L.; Kim, M. G.; Liu, S.; Liu, X.; Cho, J. Angew. Chem. Int. Ed. 2022, 61, e202212196. doi:10.1002/anie.202212196

    3. [3]

      (3) Zhang, Y.; Jang, H.; Ge, X.; Zhang, W.; Li, Z.; Hou, L.; Zhai, L.; Wei, X.; Wang, Z.; Kim, M. G.; et al. Adv. Energy Mater. 2022, 12, 2202695. doi:10.1002/aenm.202202695

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      (7) Chen, S.; Liu, X.; Xiong, J.; Mi, L.; Li, Y. Mater. Today Nano 2022, 18, 100202. doi:10.1016/j.mtnano.2022.100202

    8. [8]

      (8) Wang, Z.; Chen, J.; Song, E.; Wang, N.; Dong, J.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C.; Liu, J.; et al. Nat. Commun. 2021, 12, 5960. doi:10.1038/s41467-021026256-1

    9. [9]

      (9) Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; et al. Chem. Rev. 2020, 120, 12217. doi:10.1021/acs.chemrev.0c00594

    10. [10]

      (10) Wang, T.; Guo, Z.; Zhang, X.; Li, Q.; Yu, A.; Wu, C.; Sun, C. J. Mater. Sci. Technol. 2023, 140, 121. doi:10.1016/j.jmst.2022.07.063

    11. [11]

    12. [12]

      (12) Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, 1800191. doi:10.1002/adma.201800191

    13. [13]

      (13) Li, Y.; Wang, Z.; Ji, H.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. Chin. J. Catal. 2023, 44, 50. doi:10.1016/S1872-067(22)64148-2

    14. [14]

      (14) Wang, J.; Li, G.; Wei, T.; Zhou, S.; Ji, X.; Liu, X. Nanoscale 2021, 13, 3036. doi:10.1039/d0nr07885a

    15. [15]

      (15) Zheng, X.; Liu, Y.; Yao, Y. Chem. Eng. J. 2021, 426, 130754. doi:10.1016/j.cej.2021.130745

    16. [16]

      (16) Hao, Y.; Guo, Y.; Chen, L.; Shu, M.; Wang, X.; Bu, T.; Gao, W.; Zhang, N.; Su, X.; Zhou, J.; et al. Nat. Catal. 2019, 2, 448. doi:10.1038/s41929-019-0241-7

    17. [17]

      (17) Liu, P.; Shi, K.; Chen, W.; Gao, R.; Liu, Z.; Hao, H.; Wang, Y. Appl. Catal. B 2021, 287, 119956. doi:10.1016/j.apcatb.2021.119956

    18. [18]

      (18) Gu, J.; Hsu, C.; Bai, L.; Chen, H.; Hu, X. Science 2019, 364, 1091. doi:10.1126/science.aaw7515

    19. [19]

      (19) Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Nat. Catal. 2018, 1, 490. doi:10.1038/s41929-018-0092-7

    20. [20]

      (20) Macleod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559. doi:10.1038/NCHEM.1620

    21. [21]

      (21) Zhao, X.; Hu, G.; Chen, G.; Zhang, H.; Zhang, S.; Wang, H. Adv. Mater. 2021, 33, 2007650. doi:10.1002/adma.202007650

    22. [22]

      (22) Liang, W.; Qin, W.; Li, D.; Wang, Y.; Guo, W.; Bi, Y.; Sun, Y.; Jiang, L. Appl. Catal. B 2022, 301, 120808. doi:10.1016/j.apcatb.2021.120808

    23. [23]

      (23) Jiang, Z.; Hu, Y.; Huang, J.; Chen, S. Chin. J. Catal. 2022, 43, 2881. doi:10.1016/S1872-2067(22)64128-7

    24. [24]

      (24) Xu, S.; Ding, Y.; Du, J.; Zhu, Y.; Liu, G.; Wen, Z.; Liu, X.; Shi, Y.; Gao, H.; Sun, L.; et al. ACS Catal. 2022, 12, 5502. doi:10.1021/acscatal.2c00188

    25. [25]

      (25) Yao, D.; Tang, C.; Li, L.; Xia, B.; Vasileff, A.; Jin, H.; Zhang, Y.; Qiao, S. Adv. Energy Mater. 2020, 10, 202001289. doi:10.1002/aenm.202001289

    26. [26]

      (26) Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Carbon Energy 2023, 5, e305. doi:10.1002/cey2.305

    27. [27]

      (27) Khalil, I. E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. Adv. Funct. Mater. 2021, 31, 2010052. doi:10.1002/adfm.202010052

    28. [28]

      (28) Wan, Y.; Xu, J.; Lv, R. Mater. Today 2019, 27, 69. doi:10.1016/j.mattod.2019.03.002

    29. [29]

      (29) Zhao, R.; Chen, Y.; Xiang, H.; Guan, Y.; Yang, C.; Zhang, Q.; Li, Y.; Cong, Y.; Li, X. ACS Appl. Mater. Interfaces 2023, 15, 6797. doi:10.1021/acsami.2c19911

    30. [30]

      (30) Liu, C.; Tian, A.; Li, Q.; Wang, T.; Qin, G.; Li, S.; Sun, C. Adv. Funct. Mater. 2022, 33, 2210759. doi:10.1002/adfm.202210759

    31. [31]

      (31) Zhao, R.; Chi, X.; Wang, X.; Zhao, L.; Zhou, Y.; Xiong, Y.; Yao, S.; Wang, S.; Wang, D.; Fu, Z.; et al. J. Mater. Chem. A 2022, 10, 10219. doi:10.1039/d2ta00765g

    32. [32]

      (32) Zhang, L.; Xie, X. Y.; Wang, H.; Ji, L.; Zhang, Y.; Chen, H.; Li, T.; Luo, Y.; Cui, G.; Sun, X. Chem. Commun. 2019, 55, 4627. doi:10.1039/c9cc00936a

    33. [33]

      (33) Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S. Adv. Mater. 2019, 31, e1902709. doi:10.1002/adma.201902709

    34. [34]

      (34) Liu, X.; Jang, H.; Li, P.; Wang, J.; Qin, Q.; Kim, M. G.; Li, G.; Cho, J. Angew. Chem. Int. Ed. 2019, 58, 13329. doi:10.1002/anie.201906521

    35. [35]

      (35) Yang, Y.; Zhang, L.; Hu, Z.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R.; Qiu, K.; Mao, J.; Ling, T.; et al. Angew. Chem. Int. Ed. 2020, 59, 4525. doi:10.1002/anie.201915001

    36. [36]

      (36) Shan, J.; Ye, C.; Chen, S.; Sun, T.; Jiao, Y.; Liu, L.; Zhu, C.; Song, L.; Han, Y.; Jaroniec, M.; et al. J. Am. Chem. Soc. 2021, 143, 5201. doi:10.1021/jacs.1c01525

    37. [37]

      (37) Wang, J.; Wei, J.; An, C.; Tang, H.; Deng, Q.; Li, J. Chem. Commun. 2022, 58, 10907. doi:10.1039/D2CC03630D

    38. [38]

      (38) Qin, T.; Li, F.; Liu, X.; Yuan, J.; Jiang, R.; Sun, Y.; Zheng, H.; O'Mullane, A. P. Chem. Eng. J. 2022, 429, 132199. doi:10.1016/j.cej.2021.132199

    39. [39]

      (39) Wang, S.; Jang, H.; Wang, J.; Wu, Z.; Liu, X.; Cho, J. ChemSusChem 2019, 12, 830. doi:10.1002/cssc.201802909

    40. [40]

      (40) Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S. H.; et al. J. Am. Chem. Soc. 2021, 143, 19417. doi:10.1021/jacs.1c08050

    41. [41]

      (41) Duan, J; Chen, S.; Ortiz-Ledon, C.; Jaroniec, M.; Qiao, S. Angew. Chem. Int. Ed. 2020, 59, 8181. doi:10.1002/anie.201914967

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(1)
  • Abstract views(393)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return