Citation:
Jia Wang, Qing Qin, Zhe Wang, Xuhao Zhao, Yunfei Chen, Liqiang Hou, Shangguo Liu, Xien Liu. P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions[J]. Acta Physico-Chimica Sinica,
;2024, 40(3): 230404.
doi:
10.3866/PKU.WHXB202304044
-
The development of efficient synthetic routes for ammonia (NH3) production is the cornerstone of the modern industrial processes and human survival. Owing to the chemical inertness of nitrogen, the current ammonia industry suffers from high energy consumption and high CO2 emission. Electrochemical nitrogen reduction reaction (NRR) provides a promising alternative to the energy-intensive Haber-Bosch (HB) process, enabling green and sustainable NH3 production. However, a low NH3 yield and limited energy conversion efficiency due to the chemical inertness of N2 and competitive hydrogen evolution reaction (HER) are still critical challenges in artificial nitrogen fixation using the electrochemical NRR. Herein, we report a hole-enriched P-doped carbon (PC)-supported Zn3(PO4)2/Zn2P2O7 nanocomposite (h-PC/Zn3(PO4)2/Zn2P2O7) for efficient electrocatalytic conversion of N2 to NH3 in both acidic and neutral media. Remarkably, the unique hierarchical porous structure of the h-PC/Zn3(PO4)2/Zn2P2O7 catalyst improves the surface roughness and facilitates the diffusion of N2 within the catalyst layer, thereby prolonging the residence time of N2 and improving the utilization of active sites. The uniform distribution of multiple components modulates the electronic structure of the active sites and optimizes the adsorption behavior of various reaction intermediates, enhancing the intrinsic activity of the catalyst. Benefiting from the porous structure and multicomponent active sites, including the Zn species and PC, the h-PC/Zn3(PO4)2/Zn2P2O7 achieves an excellent NRR performance with an NH3 yield rate of 38.7 ± 1.2 μg·h-1·mgcat-1 and Faradaic efficiency (FE) of 19.8% ± 0.9% at -0.2 V vs. reversible hydrogen electrode (RHE) in 0.1 mol·L-1 HCl electrolyte. Moreover, it delivers a high NH3 yield rate of 17.1 ± 0.8 μg·h-1·mgcat-1 with an FE of 15.9% ± 0.6% at -0.2 V vs. RHE in 0.1 mol·L-1 Na2SO4 solution, which is superior to those of PC/Zn3P2, C/ZnO, and many other non-noble-metal-based electrocatalysts. Ex situ X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were conducted to monitor the changes in the composition and structure of h-PC/Zn3(PO4)2/Zn2P2O7 after being used in NRR. In particular, a new signal of N appeared in the XPS profile after NRR, confirming the occurrence of NRR. This work provides a new strategy for synchronously constructing mass transfer channels and coupling different active sites to synergistically enhance the NRR activity and selectivity of a catalyst, which is of great significance in progressing the industrialization of green ammonia production.
-
-
-
[1]
(1) Yao, D.; Tang, C.; Wang, P.; Cheng, H.; Jin, H.; Ding, L.; Qiao, S. Chem. Eng. Sci. 2022, 257, 117735. doi:10.1016/j.ces.2022.117735
-
[2]
(2) Zhou, S.; Jang, H.; Qin, Q.; Hou, L.; Kim, M. G.; Liu, S.; Liu, X.; Cho, J. Angew. Chem. Int. Ed. 2022, 61, e202212196. doi:10.1002/anie.202212196
-
[3]
(3) Zhang, Y.; Jang, H.; Ge, X.; Zhang, W.; Li, Z.; Hou, L.; Zhai, L.; Wei, X.; Wang, Z.; Kim, M. G.; et al. Adv. Energy Mater. 2022, 12, 2202695. doi:10.1002/aenm.202202695
-
[4]
-
[5]
-
[6]
-
[7]
(7) Chen, S.; Liu, X.; Xiong, J.; Mi, L.; Li, Y. Mater. Today Nano 2022, 18, 100202. doi:10.1016/j.mtnano.2022.100202
-
[8]
(8) Wang, Z.; Chen, J.; Song, E.; Wang, N.; Dong, J.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C.; Liu, J.; et al. Nat. Commun. 2021, 12, 5960. doi:10.1038/s41467-021026256-1
-
[9]
(9) Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; et al. Chem. Rev. 2020, 120, 12217. doi:10.1021/acs.chemrev.0c00594
-
[10]
(10) Wang, T.; Guo, Z.; Zhang, X.; Li, Q.; Yu, A.; Wu, C.; Sun, C. J. Mater. Sci. Technol. 2023, 140, 121. doi:10.1016/j.jmst.2022.07.063
-
[11]
-
[12]
(12) Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, 1800191. doi:10.1002/adma.201800191
-
[13]
(13) Li, Y.; Wang, Z.; Ji, H.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. Chin. J. Catal. 2023, 44, 50. doi:10.1016/S1872-067(22)64148-2
-
[14]
(14) Wang, J.; Li, G.; Wei, T.; Zhou, S.; Ji, X.; Liu, X. Nanoscale 2021, 13, 3036. doi:10.1039/d0nr07885a
-
[15]
(15) Zheng, X.; Liu, Y.; Yao, Y. Chem. Eng. J. 2021, 426, 130754. doi:10.1016/j.cej.2021.130745
-
[16]
(16) Hao, Y.; Guo, Y.; Chen, L.; Shu, M.; Wang, X.; Bu, T.; Gao, W.; Zhang, N.; Su, X.; Zhou, J.; et al. Nat. Catal. 2019, 2, 448. doi:10.1038/s41929-019-0241-7
-
[17]
(17) Liu, P.; Shi, K.; Chen, W.; Gao, R.; Liu, Z.; Hao, H.; Wang, Y. Appl. Catal. B 2021, 287, 119956. doi:10.1016/j.apcatb.2021.119956
-
[18]
(18) Gu, J.; Hsu, C.; Bai, L.; Chen, H.; Hu, X. Science 2019, 364, 1091. doi:10.1126/science.aaw7515
-
[19]
(19) Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Nat. Catal. 2018, 1, 490. doi:10.1038/s41929-018-0092-7
-
[20]
(20) Macleod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559. doi:10.1038/NCHEM.1620
-
[21]
(21) Zhao, X.; Hu, G.; Chen, G.; Zhang, H.; Zhang, S.; Wang, H. Adv. Mater. 2021, 33, 2007650. doi:10.1002/adma.202007650
-
[22]
(22) Liang, W.; Qin, W.; Li, D.; Wang, Y.; Guo, W.; Bi, Y.; Sun, Y.; Jiang, L. Appl. Catal. B 2022, 301, 120808. doi:10.1016/j.apcatb.2021.120808
-
[23]
(23) Jiang, Z.; Hu, Y.; Huang, J.; Chen, S. Chin. J. Catal. 2022, 43, 2881. doi:10.1016/S1872-2067(22)64128-7
-
[24]
(24) Xu, S.; Ding, Y.; Du, J.; Zhu, Y.; Liu, G.; Wen, Z.; Liu, X.; Shi, Y.; Gao, H.; Sun, L.; et al. ACS Catal. 2022, 12, 5502. doi:10.1021/acscatal.2c00188
-
[25]
(25) Yao, D.; Tang, C.; Li, L.; Xia, B.; Vasileff, A.; Jin, H.; Zhang, Y.; Qiao, S. Adv. Energy Mater. 2020, 10, 202001289. doi:10.1002/aenm.202001289
-
[26]
(26) Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Carbon Energy 2023, 5, e305. doi:10.1002/cey2.305
-
[27]
(27) Khalil, I. E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. Adv. Funct. Mater. 2021, 31, 2010052. doi:10.1002/adfm.202010052
-
[28]
(28) Wan, Y.; Xu, J.; Lv, R. Mater. Today 2019, 27, 69. doi:10.1016/j.mattod.2019.03.002
-
[29]
(29) Zhao, R.; Chen, Y.; Xiang, H.; Guan, Y.; Yang, C.; Zhang, Q.; Li, Y.; Cong, Y.; Li, X. ACS Appl. Mater. Interfaces 2023, 15, 6797. doi:10.1021/acsami.2c19911
-
[30]
(30) Liu, C.; Tian, A.; Li, Q.; Wang, T.; Qin, G.; Li, S.; Sun, C. Adv. Funct. Mater. 2022, 33, 2210759. doi:10.1002/adfm.202210759
-
[31]
(31) Zhao, R.; Chi, X.; Wang, X.; Zhao, L.; Zhou, Y.; Xiong, Y.; Yao, S.; Wang, S.; Wang, D.; Fu, Z.; et al. J. Mater. Chem. A 2022, 10, 10219. doi:10.1039/d2ta00765g
-
[32]
(32) Zhang, L.; Xie, X. Y.; Wang, H.; Ji, L.; Zhang, Y.; Chen, H.; Li, T.; Luo, Y.; Cui, G.; Sun, X. Chem. Commun. 2019, 55, 4627. doi:10.1039/c9cc00936a
-
[33]
(33) Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S. Adv. Mater. 2019, 31, e1902709. doi:10.1002/adma.201902709
-
[34]
(34) Liu, X.; Jang, H.; Li, P.; Wang, J.; Qin, Q.; Kim, M. G.; Li, G.; Cho, J. Angew. Chem. Int. Ed. 2019, 58, 13329. doi:10.1002/anie.201906521
-
[35]
(35) Yang, Y.; Zhang, L.; Hu, Z.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R.; Qiu, K.; Mao, J.; Ling, T.; et al. Angew. Chem. Int. Ed. 2020, 59, 4525. doi:10.1002/anie.201915001
-
[36]
(36) Shan, J.; Ye, C.; Chen, S.; Sun, T.; Jiao, Y.; Liu, L.; Zhu, C.; Song, L.; Han, Y.; Jaroniec, M.; et al. J. Am. Chem. Soc. 2021, 143, 5201. doi:10.1021/jacs.1c01525
-
[37]
(37) Wang, J.; Wei, J.; An, C.; Tang, H.; Deng, Q.; Li, J. Chem. Commun. 2022, 58, 10907. doi:10.1039/D2CC03630D
-
[38]
(38) Qin, T.; Li, F.; Liu, X.; Yuan, J.; Jiang, R.; Sun, Y.; Zheng, H.; O'Mullane, A. P. Chem. Eng. J. 2022, 429, 132199. doi:10.1016/j.cej.2021.132199
-
[39]
(39) Wang, S.; Jang, H.; Wang, J.; Wu, Z.; Liu, X.; Cho, J. ChemSusChem 2019, 12, 830. doi:10.1002/cssc.201802909
-
[40]
(40) Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S. H.; et al. J. Am. Chem. Soc. 2021, 143, 19417. doi:10.1021/jacs.1c08050
-
[41]
(41) Duan, J; Chen, S.; Ortiz-Ledon, C.; Jaroniec, M.; Qiao, S. Angew. Chem. Int. Ed. 2020, 59, 8181. doi:10.1002/anie.201914967
-
[1]
-
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[5]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[8]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[9]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[10]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[11]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[12]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[16]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[17]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[18]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[19]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[20]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(577)
- HTML views(64)