Citation: Hongpeng He,  Mengmeng Zhang,  Mengjiao Hao,  Wei Du,  Haibing Xia. 不同长径比的具有固定宽度金纳米棒的合成[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230404. doi: 10.3866/PKU.WHXB202304043 shu

不同长径比的具有固定宽度金纳米棒的合成

  • Received Date: 24 April 2023
    Revised Date: 17 May 2023
    Accepted Date: 18 May 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22072076, 21773142), the Taishan Scholarship in Shandong Province (tstp20221106) and the Fundamental Research Fund of Shandong University.

  • 金纳米棒在光学、电学、信息学和生物医学等领域具有广泛的应用。然而,一些具有特殊要求的金纳米棒还不能通过常规的方法制备。在本研究中,我们创新地将十二醇(LA)分子引入到传统种子生长方法中,成功实现了具有固定宽度的不同长径比(AR)金纳米棒(FW-Au NR)的按需制备。此外,通过合理地选择相应的反应条件(如氯金酸和硝酸银的浓度),可以在130–38.4,109–26.4和16–46 nm范围之间分别调节FW23-Au NRs,FW14-Au NRs和FW6.5-Au NRs (右上角的标注数字表示金纳米棒的宽度)的长度。即,可在一个较大的长度范围内调节具有固定宽度的金纳米棒的长径比。并且,在合适浓度的十二醇,0.24–0.30 mmol·L-1范围内调节硝酸银浓度,可以使这些金纳米棒的宽度固定在6.5–23 nm之间。另外,实现FW-Au NRs制备的关键是银离子和十二醇分子对分布在金种子晶面上的CTA-Br-Ag+化合物的密度的协同影响。
  • 加载中
    1. [1]

      (1) Ye, J. M.; Wen, Q.; Wu, Y.; Fu, Q. R.; Zhang, X.; Wang, J. M.; Gao, S.; Song, J. B. Nano Res. 2022, 15 (7), 6372. doi: 10.1007/s12274-022-4191-z

    2. [2]

      (2) Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R.; Shao, L.; Wang, J. F. Chem. Rev. 2021, 121 (21), 13342. doi: 10.1021/acs.chemrev.1c00422

    3. [3]

      (3) Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.; et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (15), E3110. doi: 10.1073/pnas.1619302114

    4. [4]

      (4) Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S. ACS Nano 2013, 7 (6), 5330. doi: 10.1021/nn401187c

    5. [5]

      (5) Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.; Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. ACS Nano 2017, 11 (12), 12732. doi: 10.1021/acsnano.7b07486

    6. [6]

      (6) Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Adv. Funct. Mater. 2018, 28 (48), 1805320. doi: 10.1002/adfm.201805320

    7. [7]

      (7) Fu, Q. R.; Ye, J. M.; Wang, J. J.; Liao, N. S.; Feng, H. J.; Su, L. C.; Ge, X. G.; Yang, H. H.; Song, J. B. Small 2021, 17 (26), 2008061. doi: 10.1002/smll.202008061

    8. [8]

      (8) Dong, Q.; Wang, X.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.; Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2018, 57 (1), 177. doi: 10.1002/anie.201709648

    9. [9]

      (9) González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M.; et al. Science 2020, 368 (6498), 1472. doi: 10.1126/science.aba0980

    10. [10]

      (10) Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. ACS Nano 2008, 2 (4), 677. doi: 10.1021/nn7003603

    11. [11]

    12. [12]

      (12) Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N.-N.; Gomes, W. R.; Ramesar, N. S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A. F.; et al. Science 2021, 371 (6536), 1368. doi: 10.1126/science.abd8576

    13. [13]

      (13) Huang, X. H.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21 (48), 4880. doi: 10.1002/adma.200802789

    14. [14]

      (14) Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L. S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X. T. Adv. Mater. 2015, 27 (33), 4910. doi: 10.1002/adma.201502486

    15. [15]

      (15) Park, K.; Biswas, S.; Kanel, S.; Nepal, D.; Vaia, R. A. J. Phys. Chem. C 2014, 118 (11), 5918. doi: 10.1021/jp5013279

    16. [16]

      (16) Jia, H. L.; Fang, C. H.; Zhu, X.-M.; Ruan, Q. F.; Wang, Y.-X. J.; Wang, J. F. Langmuir 2015, 31 (26), 7418. doi: 10.1021/acs.langmuir.5b01444

    17. [17]

      (17) Park, J.-E.; Kim, M.; Hwang, J.-H.; Nam, J.-M. Small Methods 2017, 1 (3), 1600032. doi: 10.1002/smtd.201600032

    18. [18]

      (18) Tang, H. L; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Adv. Mater. 2021, 33 (12), 2006003. doi: 10.1002/adma.202006003

    19. [19]

      (19) Yang, H.; He, H. P.; Tong, Z. R.; Xia, H. B.; Mao, Z. W.; Gao, C. Y. J. Colloid Interface Sci. 2020, 565, 186. doi: 10.1016/j.jcis.2020.01.026

    20. [20]

      (20) Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; et al. ACS Nano 2012, 6 (3), 2804. doi: 10.1021/nn300315j

    21. [21]

      (21) Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25 (8), 1450. doi: 10.1021/cm303661d

    22. [22]

      (22) Chang, H.-H.; Murphy, C. J. Chem. Mater. 2018, 30 (4), 1427. doi: 10.1021/acs.chemmater.7b05310

    23. [23]

      (23) Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge, J.; Funston, A. M. Acc. Chem. Res. 2017, 50 (12), 2925. doi: 10.1021/acs.accounts.7b00313

    24. [24]

      (24) Tong, W.; Walsh, M. J.; Mulvaney, P.; Etheridge, J.; Funston, A. M. J. Phys. Chem. C 2017, 121 (6), 3549. doi: 10.1021/acs.jpcc.6b10343

    25. [25]

      (25) Walsh, M. J.; Barrow, S. J.; Tong, W.; Funston, A. M.; Etheridge, J. ACS Nano 2015, 9 (1), 715. doi: 10.1021/nn506155r

    26. [26]

      (26) Song, Y. H.; Zhang, M. M.; Fang, H. T.; Xia, H. B. ChemPhysMater 2023, 2 (2), 97. doi: 10.1016/j.chphma.2022.04.006

    27. [27]

      (27) Zhu, J.; Lennox, R. B. ACS Appl. Nano Mater. 2021, 4 (4), 3790. doi: 10.1021/acsanm.1c00230

    28. [28]

      (28) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20 (15), 6414. doi: 10.1021/la049463z

    29. [29]

      (29) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15 (10), 1957. doi: 10.1021/cm020732l

    30. [30]

      (30) Lohse, S. E.; Murphy, C. J. Chem. Mater. 2013, 25 (8), 1250. doi: 10.1021/cm303708p

    31. [31]

      (31) Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J. Langmuir 2017, 33 (8), 1891. doi: 10.1021/acs.langmuir.6b03606

    32. [32]

      (32) Zhang, X.; Tran, N.; Egan, T.; Sharma, B.; Chen, G. J. Phys. Chem. C 2021, 125 (24), 13350. doi: 10.1021/acs.jpcc.1c01375

    33. [33]

      (33) González-Rubio, G.; Scarabelli, L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. ChemNanoMat 2020, 6 (5), 698. doi: 10.1002/cnma.201900754

    34. [34]

      (34) Meena, S. K.; Sulpizi, M. Angew. Chem. Int. Ed. 2016, 55 (39), 11960. doi: 10.1002/anie.201604594

    35. [35]

      (35) Seibt, S.; Zhang, H.; Mudie, S.; Förster, S.; Mulvaney, P. J. Phys. Chem. C 2021, 125 (36), 19947. doi: 10.1021/acs.jpcc.1c06778

    36. [36]

      (36) González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Núñez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Peña-Rodríguez, O.; Noya, E. G.; MacDowell, L. G.; et al. ACS Nano 2019, 13 (4), 4424. doi: 10.1021/acsnano.8b09658

    37. [37]

      (37) He, H. P.; Wu, C. S.; Bi, C. X.; Song, Y. H.; Wang, D. Y.; Xia, H. B. Chem. Eur. J. 2021, 27 (27), 7549. doi: 10.1002/chem.202005422

    38. [38]

      (38) Llombart, P.; Palafox, M. A.; MacDowell, L. G.; Noya, E. G. Colloids Surf. A-Physicochem. Eng. Aspects 2019, 580, 123730. doi: 10.1016/j.colsurfa.2019.123730

    39. [39]

      (39) Kim, W.-J.; Yang, S.-M.; Kim, M. J. Colloid Interface Sci. 1997, 194 (1), 108. doi: 10.1006/jcis.1997.5093

    40. [40]

      (40) Dubey, N. J. Mol. Liq. 2013, 184, 60. doi: 10.1016/j.molliq.2013.04.022

    41. [41]

      (41) Karayil, J.; Kumar, S.; Hassan, P. A.; Talmon, Y.; Sreejith, L. RSC Adv. 2015, 5 (16), 12434. doi: 10.1039/C4RA10052B

    42. [42]

      (42) Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. J. Phys. Chem. B 2005, 109 (30), 14257. doi: 10.1021/jp052516g

    43. [43]

      (43) Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. Nano Res. 2021, 14 (4), 1167. doi: 10.1007/s12274-020-3167-0

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(0)
  • Abstract views(95)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return