Citation: Yue-Zhou Zhu, Kun Wang, Shi-Sheng Zheng, Hong-Jia Wang, Jin-Chao Dong, Jian-Feng Li. Application and Development of Electrochemical Spectroscopy Methods[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230404. doi: 10.3866/PKU.WHXB202304040
-
The theoretical and experimental technologies used for electrochemical characterization methods, which are essential for determining surface structures and elucidating electrochemical reaction mechanisms, have been significantly improved after more than two centuries of development. Traditional chemical methods like cyclic voltammetry (CV) can provide the exact electrochemical reaction rate in different potential ranges, which is beneficial for identifying the electrochemical performance of electrocatalytic materials. However, traditional chemical methods alone are often inadequate when it comes to achieving a deep understanding of reaction mechanisms. In this regard, spectroscopic methods, which are powerful tools to identify the active sites and intermediate species during electrochemical reactions, are widely applied to elucidate the electrochemical mechanism at a molecular or even atomic level. In this review, three molecular-vibration-spectroscopy-based electrochemical characterization technologies, viz., infrared (IR) spectroscopy, surface-enhanced Raman spectroscopy (SERS), and sum frequency generation (SFG) spectroscopy, are comprehensively reviewed and discussed. IR, SERS, and SFG are all non-destructive spectroscopic techniques with ultra-high surface sensitivity and are indispensable when detecting surface species during electrochemical reactions. Consequently, researchers have strived to combine these spectroscopic techniques with basic electrochemical instruments. In fundamental electrochemical research, detecting electrochemical reactions in model single-crystal systems and determining the structure of interfacial water molecules have been two major research topics in recent years. Single-crystal surfaces are important in fundamental electrochemical research because of their defined atom arrays and energy states, serving as model systems to help bridge experimental results and theoretical calculations. Meanwhile, the structure of interfacial water influences most electrochemical reaction processes, and as such, probing interfacial water structures is a challenging but valuable target in fundamental electrochemical research. Additionally, the application of electrochemical spectroscopic methods to analyze fuel cells has become important, and this review covers recent SERS studies of oxygen reduction reactions (ORR) and hydrogen oxidation reactions (HOR) in hydrogen fuel cells. Concurrently, electrochemical IR and SFG studies on the electrooxidation of small organic molecules are discussed. Finally, owing to the significance of lithium-ion batteries, studies of electrochemical spectroscopic methods on solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) are becoming increasingly important and are introduced here. In conclusion, recent advances and the future developments of electrochemical spectroscopy methods are summarized in this review article.
-
-
[1]
(1) Bruckenstein, S.; Miller, B. Acc. Chem. Res. 1977, 10, 54. doi:10.1021/ar50110a004
-
[2]
(2) Andrieux, C. P.; Hapiot, P.; Saveant, J. M. J. Phys. Chem. 1988, 92, 5992. doi:10.1021/j100332a031
-
[3]
(3) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. J. Chem. Educ. 2018, 95, 197. doi:10.1021/acs.jchemed.7b00361
-
[4]
(4) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404. doi:10.1039/C9SC01545K
-
[5]
(5) McKenzie, E. C. R.; Hosseini, S.; Petro, A. G. C.; Rudman, K. K.; Gerroll, B. H. R.; Mubarak, M. S.; Baker, L. A.; Little, R. D. Chem. Rev. 2022, 122, 3292. doi:10.1021/acs.chemrev.1c00471
-
[6]
(6) Mattson, J. S.; Smith, C. A. Science 1973, 181, 1055. doi:10.1126/science.181.4104.1055
-
[7]
(7) Mattson, J. S.; Jones, T. T. Anal. Chem. 1976, 48, 2164. doi:10.1021/ac50008a028
-
[8]
(8) Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 2235. doi:10.1021/ja00449a034
-
[9]
(9) Cooley, J.; Lewis, P.; Welch, P. IEEE Trans. Audio Electroacoust. 1967, 15, 76. doi:10.1109/TAU.1967.1161903
-
[10]
(10) Clarke, J. S.; Kuhn, A. T.; Orville-Thomas, W. J.; Stedman, M. J. Electroanal. Chem. Interfacial Electrochem. 1974, 49, 199. doi:10.1016/S0022-0728(74)80227-5
-
[11]
(11) Bewick, A.; Kunimatsu, K. Surf. Sci. 1980, 101, 131. doi:10.1016/0039-6028(80)90604-4
-
[12]
(12) Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 481. doi:10.1016/S0022-0728(83)80228-9
-
[13]
(13) Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi:10.1016/j.nanoen.2016.06.023
-
[14]
(14) Li, H.; Jiang, K.; Zou, S.-Z.; Cai, W.-B. Chin. J. Catal. 2022, 43, 2772. doi:10.1016/S1872-2067(22)64095-6
-
[15]
(15) Ma, X. Y.; Zhang, W. Y.; Ye, K.; Jiang, K.; Cai, W. B. Anal. Chem. 2022, 94, 11337. doi:10.1021/acs.analchem.2c02092
-
[16]
(16) Raman, C. V.; Krishnan, K.S. Nature 1928, 121, 501. doi:10.1038/121501c0
-
[17]
(17) Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi:10.1039/B616986D
-
[18]
(18) Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318, 131. doi:10.1016/S0009-2614(99)01451-7
-
[19]
(19) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Nature 2010, 464, 392. doi:10.1038/nature08907
-
[20]
-
[21]
(21) Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; et al. Nat. Protocols 2013, 8, 52. doi:10.1038/nprot.2012.141
-
[22]
(22) De, R.; Dietzek-Ivanšić, B. Chem.-Eur. J. 2022, 28, e202200407. doi:10.1002/chem.202200407
-
[23]
(23) Sun, S. G.; Clavilier, J.; Bewick, A. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147. doi:10.1016/0022-0728(88)80319-X
-
[24]
(24) Sun, S. G.; Yang, Y. Y. J. Electroanal. Chem. 1999, 467, 121. doi:10.1016/S0022-0728(99)00032-7
-
[25]
(25) Sun, S. G.; Lin, Y. Electrochim. Acta 1996, 41, 693. doi:10.1016/0013-4686(95)00358-4
-
[26]
(26) Sun, S. G.; Lin, Y. Electrochim. Acta 1998, 44, 1153. doi:10.1016/S0013-4686(98)00218-7
-
[27]
(27) Orts, J. M.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 119. doi:10.1016/0022-0728(90)87424-I
-
[28]
(28) Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Langmuir 2006, 22, 10457. doi:10.1021/la0615995
-
[29]
(29) Schnaidt, J.; Heinen, M.; Denot, D.; Jusys, Z.; Behm, R. J. J. Electroanal. Chem. 2011, 661, 250. doi:10.1016/j.jelechem.2011.08.011
-
[30]
(30) Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2019, 4, 60. doi:10.1038/s41560-018-0292-z
-
[31]
(31) Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2020, 142, 715. doi:10.1021/jacs.9b12803
-
[32]
(32) Su, M.; Dong, J.-C.; Le, J.-B.; Zhao, Y.; Yang, W.-M.; Yang, Z.-L.; Attard, G.; Liu, G.-K.; Cheng, J.; Wei, Y.-M.; et al. Angew. Chem. Int. Ed. 2020, 59, 23554. doi:10.1002/anie.202010431
-
[33]
(33) Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T. ACS Nano 2011, 5, 5662. doi:10.1021/nn201307g
-
[34]
(34) Wang, X.; Zhong, J. H.; Zhang, M.; Liu, Z.; Wu, D.Y.; Ren, B. Anal. Chem. 2016, 88, 915. doi:10.1021/acs.analchem.5b03588
-
[35]
(35) Wen, B. Y.; Yi, J.; Wang, Y. H.; Madasamy, K.; Zhang, H.; Kathiresan, M.; Li, J. F.; Tian, Z. Q. Electrochem. Commun. 2016, 72, 131. doi:10.1016/j.elecom.2016.08.026
-
[36]
(36) Martín Sabanés, N.; Ohto, T.; Andrienko, D.; Nagata, Y.; Domke, K. F. Angew. Chem. Int. Ed. 2017, 56, 9796. doi:10.1002/anie.201704460
-
[37]
(37) Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57, 11257. doi:10.1002/anie.201805464
-
[38]
(38) Tadjeddine, A.; Peremans, A. J. Electroanal. Chem. 1996, 409, 115. doi:10.1016/0022-0728(96)04508-1
-
[39]
(39) Braunschweig, B.; Wieckowski, A. J. Electroanal. Chem. 2014, 716, 136. doi:10.1016/j.jelechem.2013.10.019
-
[40]
(40) Yang, S.; Noguchi, H.; Uosaki, K. J. Phys. Chem. C 2015, 119, 26056. doi:10.1021/acs.jpcc.5b10086
-
[41]
(41) Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D. Faraday Discuss. 2009, 141, 423. doi:10.1039/B805544K
-
[42]
(42) Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. 2013, 110, 4200. doi:10.1073/pnas.1301596110
-
[43]
(43) Osawa, M.; Ataka, K.-I.; Yoshii, K.; Yotsuyanagi, T. J. Electron. Spectrosc. Relat. Phenom. 1993, 64-65, 371. doi:10.1016/0368-2048(93)80099-8
-
[44]
(44) Ataka, K.-I.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664. doi:10.1021/jp953636z
-
[45]
(45) Wandlowski, T.; Ataka, K.; Pronkin, S.; Diesing, D. Electrochim. Acta 2004, 49, 1233. doi:10.1016/j.electacta.2003.06.002
-
[46]
(46) Osawa, M. Advances in Electrochemical Science and Engineering; Alkire, R. C., Kolb, D. M., Lipkowski, J., Ross, P. N., Eds.; Wiley:Hoboken, NJ, USA, 2006; pp. 269-314. doi:10.1002/9783527616817.ch8
-
[47]
(47) Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. J. Phys. Chem. C 2008, 112, 4248. doi:10.1021/jp710386g
-
[48]
(48) Garcia-Araez, N.; Rodriguez, P.; Navarro, V.; Bakker, H. J.; Koper, M. T. M. J. Phys. Chem. C 2011, 115, 21249. doi:10.1021/jp206539a
-
[49]
(49) Gardner, A. M.; Saeed, K. H.; Cowan, A. J. Phys. Chem. Chem. Phys. 2019, 21, 12067. doi:10.1039/C9CP02225B
-
[50]
(50) Wang, Y. H.; Li, S.; Zhou, R. Y.; Zheng, S.; Zhang, Y. J.; Dong, J. C.; Yang, Z. L.; Pan, F.; Tian, Z. Q.; Li, J. F. Nat. Protocols 2023, 18, 883. doi:10.1038/s41596-022-00782-8
-
[51]
(51) Zhang, Y. J.; Su, Z. F.; Li, J. F.; Lipkowski, J. J. Phys. Chem. C 2020, 124, 13240. doi:10.1021/acs.jpcc.0c03453
-
[52]
(52) Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. Nat. Mater. 2019, 18, 697. doi:10.1038/s41563-019-0356-x
-
[53]
(53) Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600, 81. doi:10.1038/s41586-021-04068-z
-
[54]
(54) Du, Q.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1994, 72, 238. doi:10.1103/PhysRevLett.72.238
-
[55]
(55) Becraft, K. A.; Moore, F. G.; Richmond, G. L. Phys. Chem. Chem. Phys. 2004, 6, 1880. doi:10.1039/B313513F
-
[56]
(56) Schultz, Z. D.; Shaw, S. K.; Gewirth, A. A. J. Am. Chem. Soc. 2005, 127, 15916. doi:10.1021/ja0543393
-
[57]
(57) Noguchi, H.; Okada, T.; Uosaki, K. Faraday Discuss. 2009, 140, 125. doi:10.1039/B803640C
-
[58]
(58) Tong, Y.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Angew. Chem. Int. Ed. 2017, 56, 4211. doi:10.1002/anie.201612183
-
[59]
(59) McGuire, J. A.; Shen, Y. R. Science 2006, 313, 1945. doi:10.1126/science.1131536
-
[60]
(60) Nihonyanagi, S.; Kusaka, R.; Inoue, K. I.; Adhikari, A.; Yamaguchi, S.; Tahara, T. J. Chem. Phys. 2015, 143, 124707. doi:10.1063/1.4931485
-
[61]
(61) Singh, P. C.; Inoue, K. I.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Angew. Chem. Int. Ed. 2016, 55, 10621. doi:10.1002/anie.201603676
-
[62]
(62) Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Chem. Rev. 2017, 117, 10665. doi:10.1021/acs.chemrev.6b00728
-
[63]
(63) Eftekhari-Bafrooei, A.; Borguet, E. J. Phys. Chem. Lett. 2011, 2, 1353. doi:10.1021/jz200194e
-
[64]
-
[65]
-
[66]
-
[67]
(67) Samjeské, G.; Miki, A.; Ye, S.; Yamakata, A.; Mukouyama, Y.; Okamoto, H.; Osawa, M. J. Phys. Chem. B 2005, 109, 23509. doi:10.1021/jp055220j
-
[68]
(68) Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Angew. Chem. Int. Ed. 2006, 45, 981. doi:10.1002/anie.200502172
-
[69]
(69) Grozovski, V.; Vidal-Iglesias, F. J.; Herrero, E.; Feliu, J. M. ChemPhysChem 2011, 12, 1641. doi:10.1002/cphc.201100257
-
[70]
(70) Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C. ACS Catal. 2012, 2, 728. doi:10.1021/cs200661z
-
[71]
(71) Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S. Phys. Chem. Chem. Phys. 2011, 13, 9725. doi:10.1039/C0CP01728K
-
[72]
(72) Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. ACS Catal. 2014, 4, 798. doi:10.1021/cs401198t
-
[73]
-
[74]
-
[75]
(75) Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2019, 58, 16062. doi:10.1002/anie.201908907
-
[76]
(76) Sun, Y. L.; A, Y. L.; Yue, M. F.; Chen, H. Q.; Ze, H.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; Fang, P. P.; Li, J. F. Anal. Chem. 2022, 94, 4779. doi:10.1021/acs.analchem.1c05566
-
[77]
(77) Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. J. Am. Chem. Soc. 2021, 143, 1318. doi:10.1021/jacs.0c12755
-
[78]
(78) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi:10.1038/nmat3313
-
[79]
(79) Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60, 5708. doi:10.1002/anie.202015571
-
[80]
(80) Lin, X. M.; Wang, X. T.; Deng, Y. L.; Chen, X.; Chen, H. N.; Radjenovic, P. M.; Zhang, X. G.; Wang, Y. H.; Dong, J. C.; Tian, Z. Q.; et al. Nano Lett. 2022, 22, 5544. doi:10.1021/acs.nanolett.2c01744
-
[81]
(81) Dong, J. N.; Qian, Z. X.; Xu, P.; Yue, M. F.; Zhou, R. Y.; Wang, Y. J.; Nan, Z. A.; Huang, S.; Dong, Q.; Li, J. F.; et al. Chem. Sci. 2022, 13, 5639. doi:10.1039/D2SC01043G
-
[82]
(82) Peng, C. K.; Lin, Y. C.; Chiang, C. L.; Qian, Z. X.; Huang, Y. C.; Dong, C. L.; Li, J. F.; Chen, C. T.; Hu, Z. W.; Chen, S. Y.; et al. Nat. Commun. 2023, 14, 529. doi:10.1038/s41467-023-36317-2
-
[83]
(83) Chen, J.; Liu, G.; Zhu, Y. Z.; Su, M.; Yin, P.; Wu, X. J.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 7161. doi:10.1021/jacs.0c01649
-
[84]
(84) Chen, H. Q.; Ze, H.; Yue, M. F.; Wei, D. Y.; A, Y. L.; Wu, Y. F.; Dong, J. C.; Zhang, Y. J.; Zhang, H.; Tian, Z. Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117834. doi:10.1002/anie.202117834
-
[85]
(85) Li, J.; Wang, S.; Yue, M. F.; Xing, S. M.; Zhang, Y. J.; Dong, J. C.; Zhang, H.; Chen, Z.; Li, J. F. ACS Catal. 2023, 13, 849. doi:10.1021/acscatal.2c05802
-
[86]
(86) Peremans, A.; Tadjeddine, A. Phys. Rev. Lett. 1994, 73, 3010. doi:10.1103/PhysRevLett.73.3010
-
[87]
(87) Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Behrens, R. L.; Dlott, D. D.; Wieckowski, A. J. Catal. 2011, 278, 181. doi:10.1016/j.jcat.2010.11.018
-
[88]
(88) Liu, Y.; Yu, W.; Raciti, D.; Gracias, D. H.; Wang, C. J. Phys. Chem. C 2019, 123, 426. doi:10.1021/acs.jpcc.8b08547
-
[89]
(89) Tong, Y.; Cai, K.; Wolf, M.; Campen, R. K. Catal. Today 2016, 260, 66. doi:10.1016/j.cattod.2015.08.015
-
[90]
(90) Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi:10.1002/cphc.201700736
-
[91]
(91) Neri, G.; Donaldson, P. M.; Cowan, A. J. J. Am. Chem. Soc. 2017, 139, 13791. doi:10.1021/jacs.7b06898
-
[92]
(92) Huang-fu, Z. C.; Song, Q. T.; He, Y. H.; Wang, J. J.; Ye, J. Y.; Zhou, Z. Y.; Sun, S. G.; Wang, Z. H. Phys. Chem. Chem. Phys. 2019, 21, 25047. doi:10.1039/C9CP04346B
-
[93]
-
[94]
-
[95]
(95) Gao, F.; Tian, X. D.; Lin, J. S.; Dong, J. C.; Lin, X. M.; Li, J. F. Nano Res. 2023, 16, 4855. doi:10.1007/s12274-021-4044-1
-
[96]
(96) Li, J. T.; Chen, S. R.; Fan, X. Y.; Huang, L.; Sun, S. G. Langmuir 2007, 23, 13174. doi:10.1021/la701168x
-
[97]
(97) Li, J. T.; Chen, S. R.; Ke, F. S.; Wei, G. Z.; Huang, L.; Sun, S. G. J. Electroanal. Chem. 2010, 649, 171. doi:10.1016/j.jelechem.2010.03.032
-
[98]
(98) Yang , J.; Solomatin, N.; Kraytsberg, A.; Ein-Eli , Y. ChemistrySelect 2016, 1, 572. doi:10.1002/slct.201600119
-
[99]
(99) Li, X.; Qiao, Y.; Guo, S.; Jiang, K.; Ishida, M.; Zhou, H. Adv. Mater. 2019, 31, 1807825. doi:10.1002/adma.201807825
-
[100]
(100) Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. Nat. Energy 2021, 6, 653. doi:10.1038/s41560-021-00839-0
-
[101]
(101) Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi:10.1021/acs.nanolett.9b00179
-
[102]
(102) Horowitz, Y.; Han, H. L.; Ralston, W. T.; de Araujo, J. R.; Kreidler, E.; Brooks, C.; Somorjai, G. A. Adv. Energy Mater. 2017, 7, 1602060. doi:10.1002/aenm.201602060
-
[103]
(103) Horowitz, Y.; Han, H. L.; Soto, F. A.; Ralston, W. T.; Balbuena, P. B.; Somorjai, G. A. Nano Lett. 2018, 18, 1145. doi:10.1021/acs.nanolett.7b04688
-
[104]
(104) Ge, A.; Zhou, D.; Inoue, K. I.; Chen, Y.; Ye, S. J. Phys. Chem. C 2020, 124, 17538. doi:10.1021/acs.jpcc.0c06390
-
[1]
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[3]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[4]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[5]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[6]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[7]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[8]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[9]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[10]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[11]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[12]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[15]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[16]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[17]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[18]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(445)
- HTML views(66)